
J. Korean Math. Soc.

FORMALIZING THE META-THEORY OF FIRST-ORDER

PREDICATE LOGIC

Hugo Herberlin, SunYoung Kim, and Gyesik Lee

Abstract. This paper introduces a representation style of variable bind-
ing using dependent types when formalizing meta-theoretic properties.

The style we present is a variation of the Coquand-McKinna-Pollack’s

locally-named representation. The main characteristic is the use of de-
pendent families in defining expressions such as terms and formulas. In

this manner, we can handle many syntactic elements, among which well-

formedness, provability, soundness, and completeness are critical, in a
compact manner. Another point of our paper is to investigate the roles of

free variables and constants. Our idea is that fresh constants can entirely

play the role of free variables in formalizing meta-theories of first-order
predicate logic. In order to show the feasibility of our idea, we formalized

the soundness and completeness of LJT with respect to Kripke semantics

using the proof assistant Coq, where LJT is the intuitionistic first-order
predicate calculus. The proof assistant Coq supports all the functionali-

ties we need: intentional type theory, dependent types, inductive families,
and simultaneous substitution.

1. Introduction

In predicate logic, two sorts of variable binding are involved. The binding
of bound variables is used for representing universal quantification, such as

` ∀xP (x) ,

and the binding of free variables is used for representing parametric derivations,
such as

A(a) ` B(a) .

In traditional mathematical usage, it is very common to use the same set of
variables for both sorts of binding. However, this common practice turned out
to be not so practical in a mechanical development of a formal meta-theory.
The main issue with this approach is that bound variables sometimes clash
with free variables. For instance, the standard definition of unrestricted sub-
stitution for the Lambda calculus by Curry [9, p. 94] can cause the occurrence
of variable capture during substitution, and many proofs involving substitu-
tion become notoriously tedious because one cannot define substitution by a

2000 Mathematics Subject Classification. 03F03, 03F05, 03F30.
Key words and phrases. Formal proofs, first-order predicate logic, Kripke semantics,

soundness, completeness.

1

2 H. HERBELIN, S. KIM, AND G. LEE

structural induction due to the danger of variable capture. A typical way of
addressing this issue is to work with α-conversion.

However, it turned out that dealing with α-conversion in a formal way is
not so feasible either, because this requires a huge amount of extra work. One
exceptional example is given by nominal techniques in Isabelle/HOL [27] based
on the nominal logic introduced by Pitts et al. in [10, 23]. However, to the best
of our knowledge, there exists no user-friendly work dealing with α-conversion
formalized in an intentional proof assistant, such as Coq.

Coquand [8] recognized that one can apply the idea of distinguishing be-
tween the two sorts of variables in order to avoid to reason about α-conversion.
Following his suggestion, McKinna and Pollack extensively investigated the
main characteristics involved in employing two sorts of variables in formally
proving meta-theories of Lambda calculus and Pure Type Systems [19, 20]. In
particular, they showed that many important properties of a typed lambda
calculus can be stated and proved without referring to α-conversion, such as
Church-Rosser, standardization, and subject reduction. We call the technique
developed in [8, 19, 20] the Coquand-McKinna-Pollack style locally-named rep-
resentation.

The first contribution of this paper is to present a variation of the Coquand-
McKinna-Pollack style locally-named representation. The variation makes use
of dependent type programming in representing the language syntax. The core
idea is to define expressions like terms and formulas as dependent families. For
a list of variables m, term m (resp. formula m) denotes a family of terms
(resp. formulas) where variables from m possibly occur unbound. That is, the
listm, which we call a trace, collects the bound variables that can possibly occur
unbound in a term or a formula although they are supposed to be bound by
a ∀-quantifier.1 Furthermore, the family term nil (resp. formula nil) denotes
the set of all well-formed terms (resp. formulas). Here, nil denotes the empty
list. Using this idea, one can for example give a more natural representation
of the derivability predicate without additional reference to well-formedness.
This is a major difference from the style of dealing with well-formedness in the
study of McKinna and Pollack [19, 20]. We provide a full explanation of how
this idea is applied to the formalization of the meta-theory of the intuitionistic
first-order predicate logic.

In this paper we also investigate the role of free variables. During our for-
malization work, we found out that free variables essentially play no syntactic
role, except the case where they are replaced by bound variables in stating the
generality of judgments. This fact can be seen in the following two rules with
respect to ∀-quantification where variable binding occurs:

1We remark that our idea follows the usage, common in the theory of Lambda calculus,

to have a notation for the set of terms over some sets of variables.

FORMALIZING THE META-THEORY 3

Γ, A(t) ` C
Γ, ∀xA(x) ` C (∀L) and

Γ ` A(a) a fresh in Γ, A

Γ ` ∀xA(x)
(∀R) .

These are two rules in Gentzen-style sequent calculi representing the left and
right introduction rules of ∀-quantification, respectively. Furthermore, these
are the only rules in which instantiation of a bound variable occurs. Note that
instantiation of the ∀-quantifier by an arbitrary term occurs only in (∀L) while
in (∀R) a bound variable is instantiated by a free variable. As we will see
in Figure 3 later which illustrates the whole presentation of an intuitionistic
Gentzen-style sequent calculus, called the cut-free LJT, it is not necessary to
consider instantiation of free variables in the definition of the deduction system.
This observation gives rise to the question of whether we need free variables
at all when we formalize meta-theories of a logical system. This drove us to
investigate whether we could show the same meta-theoretic results even when
we do not incorporate free variables into the language. We show that one can
instead let fresh constants play the role of free variables.

We employ the proof assistant Coq [7] as the programming tool. Coq pro-
vides all the functionalities we need to realize our ideas: intentional type theory,
dependent types, inductive families, and simultaneous substitution.2

The rest of the paper is organized as follows. Section 2 describes the syntactic
part of an intuitionistic predicate calculus LJT and discusses technical details
regarding our formalization, such as simultaneous substitution, renaming, and
quantification style. Section 3 introduces a Kripke semantics for LJT and
explains the role of simultaneous substitution in establishing meta-theoretic
results for LJT such as soundness, completeness, and cut-admissibility. Section
4 concludes with a summary and some remarks.

2. Presentation of the intuitionistic sequent calculus LJT

It is well known that nominal representation using one sort of variable is not
feasible for formal proofs in an intentional theorem prover when variable bind-
ing is involved. There have been some trials that demonstrate the feasibility of
the nominal representation style, such as Stump’s partial contribution to the
POPLmark Challenge[25]. However, on a larger and more complicated scale,
the notorious problem with variable capture has remained unsolved. On the
other hand, when one works with an intentional proof assistant, the locally-
named representation [19, 20] and the locally nameless representation [2, 6]
are excellent choices. Each style has advantages and disadvantages, but our
interest lies in the locally-named representation, because of its use of named
variables for binding.

Our work began with the observation that both representations are too
permissive in the definition of terms. Some terms cannot have any meaning,
because they contain free occurrences of some bound variables that are subject

2The Coq scripts are available at https://github.com/liganega/trace.

4 H. HERBELIN, S. KIM, AND G. LEE

to be bound. This gives rise to the necessity of an extra syntax for the so-called
well-formed terms. It is a distinctive feature of McKinna and Pollack’s work
that they introduced a method of avoiding the appeal to such well-formedness
considerations, except for a very small number of places such as the definition
of typing rules.

Remark 2.1. There are approaches with two sorts of variables that require no
extra syntax for well-formedness. For example, Sato and Pollack [24] introduced
the so-called internal syntax, where all expressions are well-formed although two
sorts of named variables are used. In fact, no α-conversion is necessary, because
all expressions are unique themselves, as this is the case with the approach
based on de Bruijn indices. However, we do not consider such approaches,
because the mechanism they employ is not related to our interest.

In order to remove the necessity of employing extra syntax for well-formed
terms, we use traces to control information regarding bound variables occurring
in the construction of terms. The idea is as follows. The elements of a trace
are not relevant, per se, which is reflected by the fact that trace relocation has
no impact on substitution and Kripke semantics. The only important point is
their occurrence in the trace, which is tracked by proofs of the membership.
This allows names and de Bruijn indices to be superimposed. Indeed, their
relationship can be observed when we examine the use of de Bruijn indices in
McBride and McKinna’s typechecker example from [18, Section 7]:

• The de Bruijn index 0 corresponds to a proof that x ∈ x :: m;
• The de Bruijn successor S on indices corresponds to a proof that x ∈ m

implies x ∈ y :: m.

Our idea is also very close to the use of families in Agda, which is indexed by
Nat to represent well-scoped terms. The origin of the idea appears to go back
to [5, 4, 1].

2.1. Predicate language without free variables

As explained in the introduction, free variables appear to play no essential
role for the establishment of meta-theories of first-order predicate logic. We
also wish to verify this, and apply our idea to the formalization of LJT, which is
a Kripke-based semantical cut-elimination of an intuitionistic first-order pred-
icate logic. We employ a version of the locally-named representation. A main
characteristic of the language of LJT is that it contains bound variables, but
no free variables.

The language of LJT involves two kinds of expressions, namely terms and
formulas. The definition of formulas involves universal quantification ∀, which
is a kind of variable binding. Therefore, we believe that this provides an ap-
propriate case study for testing and confirming our ideas.

We adopt sequent calculus style derivability to represent proofs. The ad-
vantage of such an approach is that it involves an easy-to-define notion of the

FORMALIZING THE META-THEORY 5

Terms:

x ∈ name (h : x ∈ m)

Varx h ∈ termm

c ∈ name
Cst c ∈ termm

f ∈ function t1, t2 ∈ termm

App f t1 t2 ∈ termm

Here, (h : x ∈ m) denotes that h is the proof indicating that x occurs in the
list m.

Formulas:

P ∈ predicate t ∈ termm

Atom (P, t) ∈ formulam
A ∈ formulam B ∈ formulam

A→ B ∈ formulam

x ∈ name A ∈ formula (x :: m)

∀xA ∈ formulam

Contexts: context = list formula = list (formula nil)

Occurrence of variables:

OV(Varxh) = {x}
OV(Cst c) = ∅

OV(App f t1 t2) = OV(t1) ∪ OV(t2)

OV(P t) = OV(t)

OV(A→ B) = OV(A) ∪ OV(B)

OV(∀xA) = OV(A)\{x}
Occurrence of constants:

OC(Varxh) = ∅
OC(Cst c) = {c}

OC(App f t1 t2) = OC(t1) ∪ OC(t2)

OC(P t) = OC(t)

OC(A→ B) = OC(A) ∪ OC(B)

OC(∀xA) = OC(A)

Figure 1. Terms and formulas without free variables

normal form. A proof is in normal form when it is merely constructed without
using the cut rule.

The language we consider contains → and ∀ as the sole connectives. As for
the non-logical symbols, we assume that the language contains unary predicate
symbols, binary function symbols, and infinitely many constant symbols. Note
that this assumption is not a real restriction. First, every language can be
conservatively extended to a language with infinitely many constants. Second,
functions or predicates of other arities can be represented by using binary
function symbols.

We use names to represent both bound variables and constants. Letters
such as c, d, ci, di vary over constants while letters such as x, y, xi, yi vary over
variables. In addition, f, g, fi, gi (resp. P,Q, Pi, Qi) denote function (resp.
predicate) symbols.

6 H. HERBELIN, S. KIM, AND G. LEE

Remark 2.2. All of the sets mentioned here are assumed to be decidable. A set
X is decidable if, constructively, ∀u, v ∈ X (u = v ∨ u 6= v) holds. That is, if
there exists a decision procedure to distinguish between u = v and u 6= v for
any two elements of X.

For the formalization, we use (finite) lists to denote finite sets of constants,
variables, or formulas. For instance, the list x1 :: · · · :: xn :: nil of variables de-
notes the set {x1, ..., xn}, where the order of variable occurrences is important.
For our purpose, it is sufficient to define a sublist relation in a set-theoretic
manner. A list ` is a sublist of another list k if ` is a subset of k when they are
regarded as finite sets. We also employ the usual set-theoretic notations such
as ∈, 6∈, and ⊆.

As mentioned before, one of our main ideas is to define terms and formulas
as dependent families. Given a list m of variables, the type termm (resp.
formulam) denotes the set of terms (resp. formulas), where bound variables
from m can possibly occur unbound. The basic notions are explained in Figure
1.

The crucial element in the definition of Varxh ∈ termm is the condition
(h : x ∈ m) which means that h is a witness that x is contained in the trace m.
In this manner, we control the information on variables used in the construction
of terms and formulas. Indeed, every variable occurring in a term or a formula
should be contained in the trace.

Lemma 2.3. Let e ∈ termm or e ∈ formulam. Then, OV(e) ⊆ m.

Consequently, the set of well-formed terms (resp. formulas) can be syntac-
tically represented by termnil (resp. formulanil).

2.2. Substitution and trace relocation

We pay special attention to the definition of the substitution. There are two
reasons for this. First, in order to establish the soundness and completeness of
LJT with respect to a Kripke semantics in a natural manner, it is necessary to
work with a simultaneous substitution.

Second, because of the trace part, it is not clear to which family the result
of a substitution should belong. Suppose t ∈ term m and s ∈ term m′. Then,
there are infinitely many families to which the result of the substitution of s for
a variable in t could belong. Any term family term ` such that OV(t), OV(s) ⊆ `
can be chosen. We then define substitution such that it respects the following
two points:

• Variables that are supposed to be subsequently bound in a formula
should not be considered generally substitutable.

• Only well-formed terms have a real meaning.

The idea is as follows. First, we declare a trace ` of variables that are
prohibited from being substituted, and then substitute only well-formed terms.

FORMALIZING THE META-THEORY 7

Let η = (x1, u1), ..., (xn, un) be an association, where ui ∈ termnil. Suppose
further that t ∈ termm and A ∈ formulam.

(1) [` ⇑ η] t ∈ term ` is recursively defined:

[` ⇑ η] (Var y h) =

 Var y h′ if y ∈ `
trelocuj hj if y 6∈ ` and j = min{i : y = xi}
Cst 0 otherwise

(†)

[` ⇑ η] (Cst c) = Cst c

[` ⇑ η] (App f t1 t2) = App f ([` ⇑ η] t1) ([` ⇑ η] t2)

Here

• h′ is the proof of y ∈ `,
• hj is a proof witnessing OV(uj) = nil ⊆ `.

(2) [` ⇑ η]A ∈ formula ` is recursively defined:

[` ⇑ η] (P t) = P ([` ⇑ η] t)

[` ⇑ η] (A→ B) = [` ⇑ η]A→ [` ⇑ η]B

[` ⇑ η] (∀xB) = ∀x ([x :: ` ⇑ η]B)(‡)

Figure 2. Simultaneous substitution for terms and formulas

The role of ` is well demonstrated in the abstraction case (‡), where the trace
is extended by a bound variable x in order to forbid any substitution for x.

The point is that we know where the resulting term will arrive before the
substitution is performed. In particular, if ` = nil then the result of a substi-
tution is a well-formed term or a well-formed formula. Later, we will see that
this forces us to work with more intuitive definitions and proofs, such as the
inference rules in Figure 3 and the universal completeness in Theorem 3.6. A
demonstration of how the substitution works will be given in Example 2.6.

For the definition of simultaneous substitution, we employ associations which
are lists of pairs of variables and well-formed terms. Associations will also be
used later in the semantic part.

Suppose that e is an expression. Let ` be a trace and η = (x1, u1), ..., (xn, un)
an association with ui ∈ termnil for all i. Then,

[` ⇑ η] e

denotes the result of simultaneously substituting ui for xi in e. The simulta-
neous substitution is defined by a structural recursion as in Figure 2.

Notation. We treat the single substitution [` ⇑ u /x] e := [` ⇑ (x, u)] e
as a special case. Furthermore, we write [u /x] e when ` = nil, for better
readability.

8 H. HERBELIN, S. KIM, AND G. LEE

Two points should be mentioned regarding the definition. First, some vari-
ables are ignored by assigning Cst 0 as in (†). This does not cause any problem
because in our work all free occurrences of variables should be covered either
by the list ` or by the domain of an association.

Remark 2.4. In the formal definition of substitution in Coq, the ignored case
could be handled in a different manner. Namely, by including appropriate extra
propositional arguments denoting the side condition that OV(e) ⊆ dom(η) or
OV(A) ⊆ dom(η). This would make our work more perfect for application to
dependently typed programming. However, the definition given above works
more smoothly from a technical point of view.

Second, we have to employ trace relocation in (†). The substituted term uj
is of type termnil. In order for typechecking to work, we need to relocate this
to term `, and this is the reason why trace relocation is required.

In the following, we simplify our notation for better readability. Given two
traces m and `, the trace relocation operation treloc : termm → term ` is a
partial function defined only for terms t such that OV(t) ⊆ `:

treloc(Varx h) = Varx h′

treloc(Cst c) = Cst c

treloc(App f t1 t2) = App f (treloc(t1)) (treloc(t2))

where h′ is a proof that x ∈ `, which can be obtained easily from OV(t) ⊆ `.
The relocation function is homomorphic in the sense that it does not change

or disrupt the functionality of any terms, either syntactically or semantically.
Note also that the proof element in the definition of a term is inessential in the
case that the trace contains all necessary variables and that treloc(t) does not
alter anything but proof part elements. Indeed, one can show that relocation
has no impact on substitution.

Lemma 2.5. Let ` be a trace, t a term, and η an association. Then we have

[` ⇑ η] (treloc(t)) = [` ⇑ η] t .

To demonstrate the effectiveness of our definition of substitution we give an
example.

Example 2.6. In the language of Peano arithmetic (PA), consider the follow-
ing formula

A(x, y) ≡ x < y → ∀z(x+ z < y + z) .

Note that the variables x and y are not bound. Therefore A(x, y) is not well-
formed and belongs to formula `, where ` = y :: x :: nil. On the other hand,
∀x y A(x, y) ∈ formulanil, hence a well-formed formula which is provable in
PA. From this fact, it follows that the formula A(1, 2) should also be provable
in PA. However, before we talk about its provability, we have to first guarantee
its well-formedness. In fact, the inference rules in Figure 3 involve only well-
formed formulas, i.e., formulas from the set formulanil.

FORMALIZING THE META-THEORY 9

Γ | A ` A (Ax)
Γ | A ` C A ∈ Γ

Γ ` C (Contr)

Γ ` A Γ | B ` C
Γ | A→ B ` C (→L) A :: Γ ` B

Γ ` A→ B
(→R)

Γ | [t / x]A ` C
Γ | ∀xA ` C (∀L)

Γ ` [c / x]A for some c /∈ OC(A,Γ)

Γ ` ∀xA (∀R)

Figure 3. Cut-free LJT

Informally, people used to assume the fact that OV(A(1, 2)) = ∅. However,
in our work, this kind of assumption is not necessary at all because we have by
definition

(∗) [nil ⇑ η]A(x, y) ∈ formulanil,

where η = (x, 1), (y, 2). The well-formedness of A(1, 2) follows directly from
(∗) because it is just the result of the substitution:

[nil ⇑ η]A(x, y) = [nil ⇑ η] (x < y → ∀z(x+ z < y + z))

= [nil ⇑ η] (x < y)→ [nil ⇑ η] (∀z(x+ z < y + z))

= 1 < 2→ ∀z([z :: nil ⇑ η] (x+ z < y + z))

= 1 < 2→ ∀z(1 + z < 2 + z) .

In addition to the example above, we also stress that the substitution lemma
can be proved relatively easily just by using a structural induction. The fact
that it is usually not the case is well explained e.g. in [3].

Lemma 2.7 (Substitution Lemma). Let ` be a trace, e an expression, u ∈
termnil, and η an association. Then,

[` ⇑ u / y] ([y :: ` ⇑ η] e) = [` ⇑ (y, u) :: η] e .

2.3. Cut-free LJT and weakening

The Gentzen-style sequent calculus LJT presented in Figure 3 is obtained
from the intuitionistic sequent calculus LJ by restricting the use of the left
introduction rules. A sequent is either of the form Γ | A ` C or of the form
Γ ` C, where only well-formed formulas are involved. The location between the
vertical bar “|” and the sign “`” is called the stoup and contains the principal
formula of the corresponding left introduction rule.

The formal definition in Coq of the inference rules can be represented exactly
as in Figure 3 without including any side condition, because a context is of type
list (formulanil) and a well-formed formula is of type formulanil.

10 H. HERBELIN, S. KIM, AND G. LEE

Remark 2.8. Herbelin [12, 13] and Mints [21] showed that cut-elimination
matches normalization in the λ-calculus, which is a variant of λ-calculus for
the sequent calculus structure. This implies that LJT effectively supports the
proofs-as-programs correspondence.

The right quantification rule (∀R) requires some explanation. Note first that
a fresh constant c is employed in the premise of the rule. This relies on the fact
that a fresh constant can be used instead of a fresh free variable.

Next, we must explain our choice of quantification style. It is sufficient for
the premise of (∀R) to hold for one fresh constant. There are some issues
regarding this style of quantification, such as the fact that it provides too weak
an induction principle. For example, let us attempt to prove weakening in the
following form:

Suppose Γ ⊆ Γ′ and Γ ` A. Then Γ′ ` A.

If one tries to prove this lemma by induction on the given deduction, then
one soon notices that a renaming lemma of the following form is necessary:

If ∆ ` [c / x]A holds for a fresh constant c, then ∆ ` [d / x]A
holds for every fresh constant d.

However, another naive attempt to prove this would lead to weakening, a vi-
cious circle. An excellent solution for breaking this circle is provided by Pitts
[23]. He showed that, by employing swapping, one can easily prove renaming
without appealing to weakening.

Here we explain another option that enables us to prove weakening and
renaming simultaneously. Proving weakening and renaming simultaneously
appears to be a natural idea, because they are somehow mutually dependent.
Our idea is to use simultaneous renaming which is a generalized form of vari-
able swapping. Simultaneous renaming is a kind of simultaneous substitution
where in our case constants are replaced with constants. In the following,
ρ = (c1, d1), ..., (cn, dn) denotes a simultaneous renaming of constants. Given a
formula A ∈ formulam, the formula ρA is of type formulam, where each con-
stant ci occurring in A is simultaneously renamed to di. Then ρΓ is canonically
defined for a context Γ. Now we can show the following generalized version of
weakening which can be proved by using a simple, structural induction. Weak-
ening and renaming are special forms of this theorem.

Theorem 2.9 (Generalized Weakening). Let A,C be well-formed formulas;
Γ,Γ′ contexts such that Γ ⊆ Γ′; and ρ an arbitrary renaming. Then the follow-
ing hold:

(1) Γ ` A implies ρΓ′ ` ρA.
(2) Γ | A ` C implies ρΓ′ | ρA ` ρC.

Note that no side conditions are imposed on the renaming ρ. Even injectivity
is not required. We just remark that this is because derivability is predicate
and does not belong to the part of the domain of the discourse. Otherwise,

FORMALIZING THE META-THEORY 11

Kripke models: K = (W,≤,,D, V), where (W,≤) is a partially ordered
set; D is the domain of K; V is a function such that

(1) V (c) ∈ D for all c ∈ name,
(2) V (f) : D → D → D for all f ∈ function,

and is a relation between W, predicate, and D such that

if (w ≤ w′ and w P d) holds, then w′ P d .

Here, w,w′ ∈ W; P ∈ predicate; and d ∈ D.

Interpretation of terms: Let η ∈ list (name ∗ D)

(Varxh)[η] =

{
η(x) if x ∈ dom(η)
V (0) otherwise

(Cst c)[η] = V (c)

(f t1 t2)[η] = V (f)(t1[η], t2[η])

Here, η(x) = d if (x, d) is the first occurrence from the left in η from left of
the form (x,).

Forcing: The relation is inductively extended to the following general
formulas.

w (P t)[η] iff w P (t[η])

w (A→ B)[η] iff for all w′ ≥ w, w′ A[η] implies w′ B[η]

w (∀xA)[η] iff for all d ∈ D, w A[(x, d) :: η]

w Γ iff w A[nil] for all A ∈ Γ

We sometimes write K when necessary.

Figure 4. Kripke semantics

some kind of bijectivity of the renaming will be necessary as demonstrated by
McKinna and Pollack [20].

3. Kripke semantics, soundness, completeness, and
cut-admissibility

Having seen the basic syntax of LJT, in this section we provide a Kripke
semantics for LJT. Kripke semantics was created in the late 1950s and early
1960s by Saul Kripke in [16, 17]. It was first introduced for modal logic, and
later adapted to intuitionistic logic and other non-classical and classical systems
in (cf. [26, 15]). Here, we employ the conventional Kripke model adopted by
Troelstra and van Dalen.

A Kripke model K = (W,≤,,D, V) is a tuple of a partially-ordered set W
of worlds; a domain D; interpretations of constant and function symbols into

12 H. HERBELIN, S. KIM, AND G. LEE

the domain; and a relation between worlds, predicates, and domain elements
(cf. Figure 4). The interpretation of terms is based on an association η whose
codomain is D. Note that some variables are ignored. This is necessary to cope
with the definition of simultaneous substitution, where some variables are also
ignored. Furthermore, the proof term for a list membership is simply neglected,
such that the trace relocation has no impact on the Kripke semantics.

Soundness and completeness can be formalized without any difficulty.

Theorem 3.1 (Soundness). One can prove the following simultaneously.

(1) Suppose Γ ` C holds. For any Kripke model K = (W,≤,K,D, V) and
any w ∈ W, if w K Γ holds, then so does w K C[nil].

(2) Suppose Γ | A ` C holds. For any Kripke model K = (W,≤,K,D, V)
and any w ∈ W, if w K Γ and w K A[nil] hold, then so does w K
C[nil].

If we had included free variables and let them play their intended role, then
the soundness proof would be very simple to prove, as shown in [14]. However,
because constants take the role of free variables, the (∀R) rule requires more
attention.

Suppose Γ ` ∀xA follows from Γ ` [c / x]A for a constant c /∈ OC(A,Γ) and
that w Γ holds. Then, given an arbitrary d ∈ D, we have to show that

(∗∗) w K A[(x, d) :: nil]

holds. At this point, the premise of (∀R) appears to provide too weak an
induction hypothesis. That is, a constant is associated with a fixed value,
while the interpretation of the universal quantification involves all possible
values from the domain.

A solution lies in the fact that fresh constants are as good as fresh free
variables. Syntactically, this fact is represented by the renaming lemma. At
the semantic level, this corresponds to creating a new Kripke model from a
given one such that the semantics remains nearly identical.

Definition 3.2. Given a Kripke model K = (W,≤,,D, V), a constant c, and
a value d ∈ D, we define a new Kripke model Kc,d := (W,≤,,D, Vc,d), where

Vc,d(c′) :=

{
d if c′ = c,
V (c′) otherwise.

That is, K and Kc,d differ only in the evaluation of the constant c. Conse-
quently, we can present the following lemma:

Lemma 3.3 (Forcing with fresh constants). Given a formula A and a constant
c, if c does not occur in A, then the following holds. For any Kripke model
K = (W,≤,,D, V), any w ∈ W, and any d ∈ D, we have

w K A[η] ⇐⇒ w Kc,d
A[η]

under the condition that OV(A) ⊆ dom(η) holds. Note that OV(A) ⊆ dom(η)
trivially holds when A is well-formed.

FORMALIZING THE META-THEORY 13

Now, we employ Lemma 3.3 to show that w Kc,d
Γ. Consequently, by the

induction hypothesis, we also have w Kc,d
([c / x]A)[nil]. Finally, we can

prove (∗∗):
w Kc,d

([c / x]A)[nil] ⇐⇒ w Kc,d
A[(x, d) :: nil]

⇐⇒ w K A[(x, d) :: nil],

where the first equivalence follows from the following lemma.

Lemma 3.4. Let A be a formula, u a well-formed term, and ` a trace. Then,
for any Kripke model K = (W,≤,,D, V), any w ∈ W, and any association
η, we have

w K ([` \ {x} ⇑ (x, u) :: nil]A)[η] ⇐⇒ w K A[(x, u [η]) :: η] ,

where ` \ {x} denotes the trace obtained from ` by removing x.

Formalization of completeness is performed in the same manner as in [14].
That is, we use the fact that LJT is complete with respect to a universal Kripke
model U defined as follows:

Definition 3.5 (Universal Kripke Model). U = (context,⊆,U , termnil, VU),
where

VU (c) = c and VU (f)(t1, t2) = f t1 t2 .

Furthermore, Γ U P t iff Γ ` P t holds.

Note that in the universal model U , the interpretation of terms corresponds
to substitution. That is, given a term t ∈ termm and an association η =
(x1, u1), ..., (xn, un), where ui ∈ termnil, we have t[η] = [nil ⇑ η] t. The
universal completeness, as stated below, implies that we have a similar corre-
spondence between forcing and deduction.

Theorem 3.6 (Universal Completeness). Let A be a formula, Γ ∈ context,
and η an association. Then, Γ U A[η] implies that Γ ` [nil ⇑ η]A.

Note that the formula A used in the universal completeness theorem is an
arbitrary raw formula. This fact, together with the use of simultaneous sub-
stitution, enables us to prove this natural correspondence between syntax and
semantics by a simple structural induction on A.

Theorem 3.7 (Completeness). Let A be a closed formula and Γ a context. If,
for any Kripke model K = (W,≤,,D, V) and any w ∈ W, w A follows
from w Γ, then Γ ` A holds.

A combination of completeness and soundness leads to cut-admissibility.

Theorem 3.8 (Cut-admissibility). Let A,B be formulas and Γ a context.
Then, (Cut) is admissible in LJT:

Γ | A ` B Γ ` A
Γ ` B (Cut)

14 H. HERBELIN, S. KIM, AND G. LEE

Proof. Suppose Γ | A ` B and Γ ` A hold. Then, by soundness, so do Γ U A
and Γ U B. Consequently, Γ ` B holds by the universal completeness. �

Remark 3.9. Because (Cut) is a semantically sound rule, a composition of
(soundness) and (universal completeness) normalizes any proof with (Cut) to
a cut-free proof. A program extraction (which is available in Coq) from the
composition would provide a functional program that produces a cut-free proof
from a deduction with (Cut). We believe that the normalization follows the
reduction semantic of LJT.

4. Conclusion

The main idea of this paper is that the Coquand-McKinna-Pollack style
locally-named representation can be successfully employed in the formalization
of a logical meta-theory with variable binding, especially when the proofs-as-
programs correspondence is irrelevant, which is usually the case for logicians
and mathematicians.

Moreover, our work uses traces to have control over variables used in terms
or formulas. With traces one can comfortably work with syntax, such as well-
formedness and provability. The elements of a trace are not relevant, per se,
which is reflected by the fact that trace relocation has no impact on substitution
and Kripke semantics. The only important point is their occurrence in the
trace, which is tracked by proofs of list membership. This allows names and
de Bruijn indices to be superimposed.

However, working with traces requires dependently typed programming. In
the case of Coq, working with dependent types is sometimes heavy-going. This
is one reason why simultaneous substitution is defined as a kind of partial
function. We believe that one might have it easier with other tools such as
Agda [22].

Acknowledgement

The second author was supported by the National Research Foundation of
Korea(NRF) grant funded by the Korea(MSIP) (No. NRF-2013R1A1A2073702,
NRF-2017R1C1B1004836), and by the Yonsei University Research Fund(Post
Doc. Researcher Supporting Program) of 2016 (project no.: 2016-12-0014).
The third author was partially supported by the National Research Founda-
tion of Korea(NRF) grant funded by the Korea government(MOE) (No. NRF-
2017R1D1A1B05031658).

References

[1] T. Altenkirch and B. Reus, Monadic presentation of lambda terms us-
ing generalized inductive types, Lecture Notes in Computer Science, 1683
(1999), 453–468.

FORMALIZING THE META-THEORY 15

[2] B. Aydemir, A. Charguéraud, B. C. Pierce, R. Pollack, and S. Weirich,
Engineering formal metatheory, ACM SIGPLAN Notices, 43 (2008), no.
1, 3–15.

[3] S. Berghofer and C. Urban, A Head-to-Head Comparison of de Bruijn
Indices and Names, Electronic Notes in Theoretical Computer Science,
174 (2007), no. 5, 53–67.

[4] R. S. Bird and L. Meertens, Nested datatypes, Lecture Notes in Computer
Science, 1422 (1998), 52–67.

[5] R. S. Bird and R. Paterson, De Bruijn notation as a nested datatype,
Journal of Functional Programming, 9 (1999), no. 1, 77–91.

[6] A. Charguéraud, The locally nameless representation, Journal of Auto-
mated Reasoning, 49 (2012), no. 3, 363–408.

[7] Coq Development Team, The Coq Proof Assistant Reference Manual,
Available at http://coq.inria.fr.

[8] T. Coquand, An algorithm for testing conversion in Type Theory, in
G. Huet and G. Plotkin, editors, Logical Frameworks, Cambridge Uni-
versity Press, 1991, 255–279.

[9] H. B. Curry and R. Feys, Combinatory Logic. Volume 1, North Holland,
1958.

[10] M. J. Gabbay and A. M. Pitts, A new approach to abstract syntax with
variable binding, Formal Aspects of Computing, 13 (2002), no. 3-5, 341–
363.

[11] G. Gentzen, Untersuchungen über das logische Schließen. I, Mathematis-
che Zeitschrift, 39 (1934), no. 2, 176–210.

[12] H. Herbelin, A λ-calculus structure isomorphic to gentzen-style sequent
calculus structure, Lecture Notes in Computer Science, 933 (1994), 61–75.

[13] H. Herbelin, Séquents qu’on calcule: de l’interprétation du calcul des
séquents comme calcul de λ-termes et comme calcul de stratégies gag-
nantes, Ph.D. thesis, Université Paris 7, 1995.

[14] H. Herbelin and G. Lee, Forcing-based cut-elimination for gentzen-style
intuitionistic sequent calculus, Lecture Notes in Computer Science, 5514
(2009), 209–217.

[15] D. Ilik, G. Lee, and H. Herbelin, Kripke models for classical logic, Ann.
Pure Appl. Logic, 161 (2010), no. 11, 1367–1378.

[16] S. Kripke, A Completeness Theorem in Modal Logic, Journal of Symbolic
Logic, 24 (1959), no. 1, 1–14.

[17] , Semantical considerations on modal and intuitionistic logic, Acta
Philosophica Fennica, 16 (1963), 83–94.

[18] C. McBride and J. McKinna, The view from the left, Journal of Functional
Programming, 14 (2004), no. 1, 69–111.

[19] J. McKinna and R. Pollack, Pure type systems formalized, Lecture Notes
in Computer Science, 664 (1993), 289–305.

[20] J. McKinna and R. Pollack, Some lambda calculus and type theory formal-
ized, Journal of Automated Reasoning, 23 (1999), no. 3-4, 373–409.

16 H. HERBELIN, S. KIM, AND G. LEE

[21] G. Mints, Normal forms for sequent derivations, in P. Odifreddi, editor,
Kreiseliana, A. K. Peters, Wellesley, 1996, 469–492.

[22] U. Norell, Dependently typed programming in Agda, in A. Kennedy and
A. Ahmed, editors, Proceeding of TLDI’09, ACM, 2009, 1–2

[23] A. M. Pitts, Nominal logic, a first order theory of names and binding,
Information and Computation, 186 (2003), no. 2, 165–193.

[24] M. Sato and R. Pollack, External and internal syntax of the lambda-
calculus, Journal of Symbolic Computation, 45 (2010), no. 5, 598–616.

[25] A. Stump, Poplmark 1a with named bound variables. Available at https:
//www.seas.upenn.edu/~plclub/poplmark/stump.html/.

[26] A. S. Troelstra and D. van Dalen, Constructivism in Mathematics: An
Introduction I and II, vol. 121, 123, North-Holland, 1988.

[27] C. Urban, Nominal Techniques in Isabelle/HOL, Journal of Automated
Reasoning, 40 (2008), no. 4, 327–356.

Hugo Herberlin

Laboratoire IRIF-PPS
INRIA, PPS

75205 Paris Cedex, France

E-mail address: Hugo.Herberlin@inria.fr

SunYoung Kim

Department of Mathematics
Yonsei University

Seoul 03722, Korea

E-mail address: sunyoungkim831@gmail.com

Gyesik Lee

Department of Computer Science and Engineering
Hankyong National University

Anseong 17579, Korea

E-mail address: gslee@hknu.ac.kr

