
Proof Pearl: Substitution Revisited, Again

Gyesik Lee

Hankyong National University, Korea
gslee@hknu.ac.kr

Abstract. We revisit Allen Stoughton’s 1988 paper “Substitution Re-
visited” and use it as our test case in exploring a nominal approach
to variable binding in Coq. In our nominal approach, we use only one-
sorted variable names as in pen-and-paper work. We show that it is not
only feasible, but also convenient to work with the nominal approach in
Coq. Furthermore, we figure out a light infrastructure which provides
the base in proving a series of results about simultaneous substitution
and α-congruence in the untyped λ-calculus.

1 Introduction

Stoughton (1988) demonstrated a noncanonical, but elegant and
sound “nominal” approach to variable binding. Any substitution (in-
cluding identity substitution) puts terms in a substitution normal
form, and α-congruence is equality of substitution normal forms.

In spite of the noncanonical aspect, we find Stoughton’s repre-
sentation very interesting because we believe it is closely related to
Barendregt’s Variable Convention:

VARIABLE CONVENTION. If M1, . . . ,Mn occur in a
certain mathematical context (e.g. definition, proof), then in
these terms all bound variables are chosen to be different from
the free variables. (Barendregt 1984)

This convention tacitly assume that we can rename bound variables
by fresh ones when necessary, for example, in case of possible variable
capture. On the other hand, in Stoughton’s representation we rename
bound variables whenever we do substitutions without thinking of
whether variable capture occurs or not.

From the standpoint of mechanization, it is much more conve-
nient to do reasoning without being based on tacit conventions. In-
deed, as long as we stick to one-sorted variable names, there is no di-
rect way to formalize reasoning based on such tacit assumptions like



2

Barendregt’s Variable Convention. Such a formalization would work
entirely at the level of terms quotiented by α-congruence. Pitts’s
Nominal Logic (Pitts 2003) and nominal techniques in Isabelle/HOL
(Urban and Tasson 2005), e.g., can be regarded as methods of for-
malizing the spirit of Barendregt. Moreover, as Barendregt’s Variable
Convention leads to slick informal proofs, we find that the unre-
stricted substitution is adequate for formalization of reasoning in a
proof assistant like Coq.

Therefore, we decided to use (Stoughton 1988) as our test case
in exploring a “nominal” approach to variable binding in Coq. This
approach is characterized by a close correspondence between the
original reasoning on paper and ours within Coq.

To the best of our knowledge, there are two previous works where
the idea of unrestricted substitution are adopted. O’Connor (2005)
used it to formalize the Gödel-Rosser incompleteness theorem. But
he did not use simultaneous substitution, hence could not maximize
the efficiency of the unrestricted substitution, cf. O’Connor (2005,
Section 2.4).

On the other hand, Garillot and Werner (2007) applied the orig-
inal unrestricted substitution in a formal treatment of normaliza-
tion by evaluation in type theory. There are, however, two main
differences from ours. First, we use Coq’s internal equality when we
do reasoning about sets of free variables while it is not the case in
Garillot and Werner’s work. Second, we use Coq’s basic terminol-
ogy and techniques while they use the Ssreflect plugin. Their source
code can be found at https://github.com/huitseeker/nbe. The
file nbe_alpha_conversion.v contains the part about α-congruence
and can be compared with ours at http://formal.hknu.ac.kr/
Stoughton/. We find that these previous works provide an enough
evidence for the adequacy of the Stoughton’s unrestricted substitu-
tion in formal work.

Our primary contribution is to demonstrate that it is not only
feasible, but also convenient to work with the nominal approach in
Coq. Most of all, our formalization is very compact and close to the
original reasoning on paper.1

1 We even believe that it would satisfy the three criteria proposed by (Aydemir et al.
2005), i.e., reasonable overheads, cost of entry, and transparency in evaluating mech-
anization of formal metatheory. However, this goes beyond the scope of this paper.

https://github.com/huitseeker/nbe
http://formal.hknu.ac.kr/Stoughton/
http://formal.hknu.ac.kr/Stoughton/


3

The rest of the pearl gives explanations about our formalization
in Coq. Section 2 explains our choice of the formal representation of
the untyped λ-calculus, substitution, and α-congruence. In Section
3, it is demonstrated how basic, but important properties about
substitution and α-congruence can be formally proved. Section 4
deals with denotational semantics of the untyped λ-calculus. Finally,
Section 5 concludes.

2 Definitions

We assume a denumerable and decidable set var of variable names.
A set is decidable when the equality of two elements are decidable.
For simplicity, we use nat, the type of natural numbers, as var. In
the rest of the paper, we use the following notations.

Notation " x @ L " := (In x L) (at level 70).
Notation " x # L " := (~ In x L) (at level 70).
Notation " L \ { x } " :=

(remove eq_nat_dec x L) (at level 59).

Terms and free variables. Untyped terms are defined as usual:

Inductive term : Set :=
Var : var -> term

| App : term -> term -> term
| Lam : var -> term -> term.

The set FV M of free variables in a term M is defined recursively
and realized by Coq’s standard (finite) lists of variables. A variable
x is free in a term M iff (x @ FV M).

Fixpoint FV (M : term) : list var :=
match M with

| Var x => x :: nil
| App M0 M1 => (FV M0) ++ (FV M1)
| Lam x M’ => (FV M’) \ {x}

end.

Unrestricted simultaneous substitution. (var -> term) denotes the
set of simultaneous substitutions. The identity substitution iota is
defined by iota x = Var x.



4

Definition substitution := var -> term.
Notation iota := (fun x : var => Var x).

Defining the set of substitutions as a function type is another
difference from Garillot and Werner’s formalization where they used
finite lists of pairs of variables and terms. Whether to use functions
or finite lists to represent simultaneous substitutions is an important
choice factor for implementation. We also started first using finite
lists, then found it a little bit too much when equality of substitutions
is involved. We could save a lot after we took the function type
instead. Moreover, it made our formalization closer to the reasoning
on paper. Note then that functional extensionality is necessary to
deal with functional equality.

As already mentioned, the unrestricted substitution always re-
names all the bound variables in order to avoid variable capture. For
that we first need to know which variables occur during substitution.
Then we use three operations to choose fresh ones. First, fv_coll
collects all the free variables from the codomain of a substitution
function with respect to a finite list. Second, old uses fv_coll to
collect free variables which come up during a substitution. Note that
old is the dual function of Stoughton’s new. It builds cofinite sets of
variables which do not come up during a substitution. Finally, given
a finite set L of variables, choice chooses a fresh variable which
does not belong to L. We take the least one bigger than any element
from L. In fact, it does not matter how to choose a fresh one, cf.
Corollary C3_11 on page 9.

Fixpoint fv_coll (L : list var)(rho : substitution) :
list var :=
match L with

| nil => nil
| x :: l0 => FV (rho x) ++ fv_coll l0 rho

end.

Definition old (x : var)(M : term)(rho : substitution) :
list var := fv_coll (FV M \ {x}) rho.

Definition choice (L : list var) : var :=
S (fold_right max 0 L).



5

These three operations guarantee the freshness of the new vari-
ables in the definition of unrestricted simultaneous substitution. We
also define compositions of simultaneous substitutions.

Fixpoint subst (M : term)(rho : substitution) : term :=
match M with

| Var x => rho x
| App M0 M1 => App (subst M0 rho) (subst M1 rho)
| Lam x M’ => let y := choice (old x M’ rho) in

Lam y (subst M’ (rho [[Var y => x]]))
end.

Notation " M {{ rho }} " := (subst M rho) (at level 55).

Definition comp (eta rho : substitution) :=
fun x => (rho x) {{eta}}.

Here rho [[Var y => x]] stands for the substitution which differs
from rho only by the value at x. That is, it renames every occurrence
of the variable Var x by Var y.

This formal version of the unrestricted substitution shows clearly
the importance of simultaneous substitution. If we had used a stan-
dard, single substitution, then we needed to first rename Var x by
Var y, then apply the substitution. This, however, means that we
could not have structural recursion. See O’Connor (2005, Section
2.4) for further detail.

The following lemma is most crucial in the whole development.
It reduces properties about substitution and free variables to the
level of collecting free variables. So we do not need worry about
the complex mechanism of substitution. Furthermore, we use Coq’s
internal equality instead of any kind of set-theoretic equalities or
setoid equalities.

Lemma fv_coll_subst :
forall (M : term) (rho : substitution),

FV (M {{rho}}) = fv_coll (FV M) rho.

α-congruence. Stoughton defined the α-congruence relation, =α, as
the least equivalence relation over term such that



6

(µ) M N =α M’ N’ if M =α M’ and N =α N’; and
(α) Lam x M =α Lam y N if either

(i) x = y and M =α N, or
(ii) y 6∈ FV M and M {{iota [[Var y => x]]}} =α N.

and showed that it can be characterized by a structural induction.
Here we take this structural characterization of α-congruence as our
definition. We find it mathematically more natural to use a structural
characterization.

Furthermore, defining α-congruence this way is more appropri-
ate for a formal development in Coq where inductive reasoning is
the most powerful tool. It provides not only a structural induction
principle, but also reduces the number of cases to be considered.

Inductive a_cong : term -> term -> Prop :=
| al_var : forall (x : var), (Var x) Eq (Var x)
| al_app : forall (M N M0 N0 : term),

M Eq M0 -> N Eq N0 -> (App M N) Eq (App M0 N0)
| al_lam_eq : forall (x y : var) (M N : term),

x = y -> M Eq N -> (Lam x M) Eq (Lam y N)
| al_lam_notin : forall (x y : var) (M N : term),

y # FV M -> (M {{iota [[Var y => x]]}}) Eq N ->
(Lam x M) Eq (Lam y N)

where " M ’Eq’ N " := (a_cong M N).

We also need to talk about the α-congruence of substitutions.

Definition subst_cong (rho eta : substitution)
(X : list var) :=
forall x, x @ X -> (rho x) Eq (eta x).

3 Substitution and α-congruence

Stoughton (1988) implicitely used the fact that the α-congruence
relation is an equivalence relation. Here we will make it explicit
where the reflexivity, symmetry, and transitivity of the relation of
α-congruence are necessary. And they will be proved when it is pos-
sible. The reflexivity is a basic one needed everywhere.

Lemma a_cong_refl (M : term) : M Eq M.



7

Remark. In this and next section we use the same numbering for
lemmas, theorems, and corollaries as in the original paper. For ex-
ample, L3_1_ii corresponds to Lemma 3.1.(ii) in (Stoughton 1988).

As already mentioned just before Lemma fv_coll_subst, prop-
erties about substitution and free variables can be reduced to those
about collecting free variables. For instance, in order to prove

Lemma L3_1_ii : forall (M : term)(x : var)
(rho : substitution),
x @ FV (M {{rho}}) <->
exists y :var, y @ FV M /\ x @ FV (rho y).

we just need to show the following which is much more convenient
to deal with. It can be proved by a simple induction on lists.

Lemma L3_1_ii’ : forall (L : list var)(x : var)
(rho : substitution),
x @ fv_coll L rho <->
exists y : var, y @ L /\ x @ FV (rho y).

Except for Lemma 3.1.(vi) in Stoughton (1988), most of the prop-
erties can be formally proved almost in the same way as on paper.

Lemma L3_1_vi : forall (M : term), M {{iota}} Eq M.

The original short proof of Lemma L3_1_vi is based on the fact that
the α-congruence relation is symmetric. Note however that we do
not have the symmetry yet. In our formalization, Lemma L3_1_vi
cannot be proved until we have the following syntactic Substitution
Lemma.

Theorem T3_2 : forall (M : term)(rho eta : substitution),
(M {{rho}}) {{eta}} = M {{comp eta rho}}.

And this Substitution Lemma is necessary to prove Theorem T3_5
which says that applying a substitution to congruent terms yields
equal, not just α-congruent, terms.

Theorem T3_5 : forall (M N : term),
M Eq N -> forall rho, M {{rho}} = N {{rho}}.



8

An immediate consequence is that identity substitutions normalize
terms with respect to α-congruence.

Corollary C3_6_i : forall (M N : term),
M Eq N <-> M {{iota}} = N {{iota}}.

However, in order to prove this corollary from Theorem T3_5, we
first need to prove that the relation of α-congruence is an equivalence
relation. Surprisingly, the symmetry and transitivity can be proved
only after we have Theorem T3_5. Therefore, in our formalization,
Lemma L3_1_vi is necessary to prove the symmetry and transitivity
of the α-congruence relation, not the other way around.

The transitivity is one of the most difficult properties to show in
our formalization. It needs an auxiliary lemma a_cong_trans_iota
which says that the transitivity holds with respect to the normalized
terms.

Lemma a_cong_sym (M N : term) :
M Eq N -> N Eq M.

Lemma a_cong_trans_iota : forall (M N : term),
M {{iota}} Eq N -> M Eq N.

Lemma a_cong_trans : forall (M N P : term),
M Eq N -> N Eq P -> M Eq P.

We close this section by listing some other important properties.
First, α-equivalent terms contain the same free variables:

Lemma L3_1_iii : forall (M N : term),
M Eq N -> FV M = FV N.

Second, substitution and alpha-congruence are compatible:

Corollary C3_8 : forall (M N : term)
(rho eta : substitution),
M Eq N ->
subst_cong rho eta (FV M) ->
M {{rho}} Eq N {{eta}}.



9

Third, in the definition of Lam x M {{rho}}, the choice of fresh vari-
ables can be arbitrary up to α-congruence as long as it does not
belong to old x M rho:

Corollary C3_11 : forall (M : term)(x y : var)
(rho : substitution),
y # old x M rho ->
(Lam x M) {{rho}} Eq Lam y (M {{rho [[Var y => x]]}}).

4 Substitution and denotational semantics

This section consists of a proof of the semantic analogue of the syn-
tactic Substitution Lemma in a denotational semantics. The deno-
tational semantics is based on a complete partial order (cpo):

– E, a cpo of expression values, is a nontrivial solution to the iso-
morphism equation E ∼= (E -> E) ;

– In : (E -> E) -> E and Out : E -> (E -> E) are continuous
functions such that Out ◦ In = id(E -> E) and In ◦ Out = idE.

Here we just assume that such a cpo E with two continuous functions
In and Out are given.

Parameter E : Type.
Parameter In : (E -> E) -> E.
Parameter Out : E -> (E -> E).
Axiom OutIn : forall (f : E -> E), Out (In f) = f.
Axiom InOut : forall (x : E), In (Out x) = x.

We now define a denotational semantics for the untyped λ-calculus
by a structural recursion. We let U stand for the cpo of environments
fvar -> E, ordered componentwise.

Fixpoint DS (M : term) : U -> E :=
match M with

| Var x => fun tau => tau x
| App M1 M2 =>

fun tau => (Out (DS M1 tau)) (DS M2 tau)
| Lam x M’ =>

fun tau => In (fun e => DS M’ (tau [[e => x]]))
end.



10

Then the semantic analogue of the syntactic Substitution Lemma
holds. The expression e_comp tau rho denotes the composition of
an environment tau and a substitution rho.

Definition e_comp (tau : U) (rho : substitution) : U :=
fun x => DS (rho x) tau.

Theorem T4_2 : forall (M : term)(tau : U)
(rho : substitution),
DS (M {{rho}}) tau = DS M (e_comp tau rho).

Finally, we can show that α-equivalent terms are equal in the
denotational semantics.

Corollary C4_5 : forall (M N : term),
M Eq N -> DS M = DS N.

5 Conclusion

Our proof pearl introduces a formalization of “Substitution Revis-
ited” (Stoughton 1988) in Coq. The formalization is done as close as
possible to the original reasoning on paper and show that it is not
only feasible, but also convenient to work with the nominal approach
in Coq:

– We apply nominal approach with one-sorted variable names to
variable binding in Coq.

– We use Coq’s internal equality instead of any kind of set-theoretic
equalities or setoid equalities.

– We employ only Coq’s basic terminology and techniques.

Our future work is to extend this work by applying the unre-
stricted simultaneous substitution to more serious tasks. We hope
that this work encourages others to get more interested in nominal
approach in Coq.

Availability The sources which this paper is based on are available
from http://formal.hknu.ac.kr/Stoughton/.

http://formal.hknu.ac.kr/Stoughton/


11

References

Brian E. Aydemir, Aaron Bohannon, Matthew Fairbairn, J. Nathan
Foster, Benjamin C. Pierce, Peter Sewell, Dimitrios Vytiniotis, Ge-
offrey Washburn, Stephanie Weirich, and Steve Zdancewic. Mech-
anized Metatheory for the Masses: The PoplMark Challenge. In
TPHOLs, volume 3603 of Lecture Notes in Computer Science,
pages 50–65. Springer, 2005.

H.P. Barendregt. The Lambda Calculus: Its Syntax and Semantics.
Studies in Logic and the Foundations of Mathematics. North-
Holland, 1984.

François Garillot and Benjamin Werner. Simple Types in Type
Theory: Deep and Shallow Encodings. In TPHOLs, volume 4732
of Lecture Notes in Computer Science, pages 368–382. Springer,
2007.

Russell O’Connor. Essential incompleteness of arithmetic verified
by coq. In TPHOLs, volume 3603 of Lecture Notes in Computer
Science, pages 245–260. Springer, 2005.

Andrew M. Pitts. Nominal logic, a first order theory of names and
binding. Inf. Comput., 186(2):165–193, 2003.

Allen Stoughton. Substitution Revisited. Theor. Comput. Sci., 59:
317–325, 1988.

Christian Urban and Christine Tasson. Nominal Techniques in Is-
abelle/HOL. In CADE, volume 3632 of Lecture Notes in Computer
Science, pages 38–53. Springer, 2005.


	Proof Pearl: Substitution Revisited, Again

