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Abstract. Concerning the set of rooted binary trees, one shows that
Higman’s Lemma and Dershowitz’s recursive path ordering can be used
for the decision of its maximal order type according to the homeomorphic
embedding relation as well as of the order type according to its canonical
linearization, well-known in proof theory as the Feferman-Schütte nota-
tion system without terms for addition. This will be done by showing
that the ordinal ωn+1 can be found as the (maximal) order type of a set
in a cumulative hierarchy of sets of rooted binary trees.

1 Introduction

Well-partial-ordering: A quasi-ordering is a pair (X,¹), where X is a set
and ¹ is a transitive, reflexive binary relation on X. If Y ⊆X we write (Y,¹)
instead of (Y,¹ ¹Y × Y ). A quasi-ordering (X,¹) is called a partial ordering if
¹ is antisymmetric, too.

For any partial ordering (X,¹) and any x, y ∈ X we write x ≺ y for x ¹ y
and y 6¹ x. A linear ordering is a partial ordering (X,¹) in which any two
elements are ¹-comparable.

A well-quasi-ordering (wqo) is a quasi-ordering (X,¹) such that there is no
infinite sequence 〈xi〉i∈ω of elements of X satisfying: xi 6¹ xj for all i < j.
A well-partial-ordering (wpo) is a partial ordering which is well-quasi-ordered.
(X,≺) is called well-ordering if (X,¹) is a linear wpo. The following condition
is necessary and sufficient for a partial ordering (X,¹) to be a wpo:

Every extension of ¹ to a linear ordering on X is a well-ordering.

In the following, we assume a basic knowledge about ordinals up to ε0 and their
arithmetic. Here are some notations:

ω0(α) := α ωn+1(α) := ωωn(α) ωn := ωn(1)

The order type of a well-ordering (X,≺), otyp(≺), is the least ordinal for
which there is an order-preserving function f : X → α:

otyp(≺) := min{α : there is an order-preserving function f : X → α}

Given a wpo (X,¹) consider an extension (X,≺+) which is a well-ordering. How
big is the order type of the well-ordering? Is there any non-trivial upper bound
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for it? Here ‘non-trivial’ means that the bound is lower than the obvious upper
bound obtained by considering the cardinality of X. To this question, de Jongh
and Parikh [1] gives a clear answer.

Definition 1. Given a wpo (X,¹) its maximal order type is defined as follows:

o(X,¹) := sup{otyp(≺+) : ≺+ is a well-ordering on X extending ¹} .

We simply write o(X) for o(X,¹) if it causes no confusion.

Theorem 2 (de Jongh and Parikh [1]). If (X,¹) is a wpo, then there is a
well-ordering ≺+ on X extending ¹ such that o(X) = otyp(≺+).

We refer to Schmidt [2] for more extensive study concerning maximal order type.

Higman embedding: Given a set A, let A∗ be the set of finite sequences of
elements from A. Let (A,¹) be a partial ordering. The Higman embedding ¹H

is the partial ordering on A∗ defined as follows:

a1, . . . , am ¹H b1, . . . , bn

if there is a strictly increasing function g : [1,m] → [1, n] such that ai ¹ bg(i) for
all i ∈ [1,m].

Theorem 3.

1. (Higman’s Lemma) If (A,¹) is a wpo(resp. wqo), then so is (A∗,¹H).
2. (de Jongh and Parikh) If (A,¹) is a wpo with o(A,¹) = α > 0, then we

have:

o(A∗,¹H) =





ωωα−1
if α ∈ ω \ {0} .

ωωα

if α = β + m, where β ≥ ω, β 6= ωβ , and m ∈ ω .

ωωα+1
otherwise .

Proof. See e.g. [3,1,2,4]. �
Binary trees: A rooted binary tree T is a set of nodes such that, if it is not
empty, there is one distinguished node called the root of T and the remaining
nodes are partitioned into two rooted binary trees. Here is a formal definition:

Assume a constant o and a binary function symbol ϕ are given. The set of
rooted binary trees B is the least set of terms defined as follows:

– o ∈ B;
– if α, β ∈ B, then ϕ(α, β) ∈ B.

We will write ϕαβ instead of ϕ(α, β) if it causes no confusion. The homeo-
morphic embeddability relation E on B is the least subset of B × B defined as
follows:

– o E β for all β ∈ B;
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– if α = ϕα1α2, β = ϕβ1β2, then α E β if one of the following cases holds:
(i) α E β1 or α E β2;

(ii) α1 E β1 and α2 E β2.

Higman [3] showed that (B,E) is a wpo, and in an unpublished paper, de
Jongh showed that o(B, E) = ε0. Furthermore, one easily finds a well-ordering
< extending E such that otyp(<) = ε0: α < β is true if

– α = o and β 6= o; or
– α = ϕα1α2, β = ϕβ1β2 and one of the following cases holds:

(i) α1 < β1 and α2 < β; or
(ii) α1 = β1 and α2 < β2; or

(iii) α1 > β1 and α ≤ β2.

One can easily see that ≤ extends E, and it is a folklore in proof theory that
< is a well-ordering on B with otyp(<) = ε0. In fact, the system (B, <) is the
system which is obtained from the Feferman-Schütte notation system for Γ0 by
omitting the addition terms. See e.g. [5,6,7,8] for more details.

In this paper, we will give a new proof that o(B, E) = otyp(B, <) = ε0.
Furthermore, this will be done by characterizing the subsets of B which have
ωn as their maximal order types according to the homeomorphic embedding
relation.

2 Cumulative hierarchies (Bd)d and (Bd,k)k

In Weiermann [9], a cumulative hierarchy of Bd sucht that
⋃

d Bd = B is pre-
sented. Here we give cumulative hierchies (Bd,k)k such that

⋃
k Bd,k = Bd for

any d > 0.1

Given a natural number d we define Bd recursively as follows:

– o ∈ Bd;
– if d > 0, α ∈ Bd−1, and β ∈ Bd, then ϕαβ ∈ Bd.

And define ρd(α) for α ∈ B as follows:

ρ0(α) = α and ρd+1(α) = ϕρd(α)0

Lemma 4. Let d be a natural number.

1. B =
⋃{Bd : d ∈ ω}.

2. If α ∈ Bd, then α < ρd+1(o) and ρk(α) ∈ Bd+k.
3. ρd+1(o) ∈ Bd+1 \ Bd.
4. If α < β, then ρd(α) < ρd(β).

1 These cumulative hierarchies are essential for the proofs of phase transition of some
combinatorial properties with respect to PA or IΣn respectively since they allow one
to a structural approach to the sets from below. See Weiermann [9] and Lee [10] for
more about phase transition concerning binary trees.
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5. If α E β, then ρd(α) E ρd(β).
6. If α ∈ Bd+1 \ Bd and β ∈ Bd, then α 5 β and β < α.

Proof. The first five claims are obvious. We show the last assertion by induction
on α and β. If β = 0 there is nothing to show. Let α = ϕα1α2 and β = ϕβ1β2.
If α1 ∈ Bd−1, then α2 ∈ Bd+1 \ Bd. Hence β < α2 < α by I.H. Now assume
α1 ∈ Bd \ Bd−1. Then β1 < α1 and β2 < α by I.H., so β < α and α 5 β. �

Note that ω and B1 can be identified by the isomorphism f defined as follows:
f(0) := o and f(n + 1) := ϕ(o, f(n)). Hence we may talk about occurrences of
natural numbers in α ∈ Bd, d ≥ 1.

For k ≥ 1 define

– B1,k := {0, 1, . . . , k − 1}.
– Bd+1,k := {α : α = 0 or α = ϕβγ, where β ∈ Bd,k and γ ∈ Bd+1,k}.

Lemma 5. Let d, k be natural numbers.

1. Bd =
⋃

k>0 Bd,k.
2. If α ∈ Bd+1,k, then α < ρd(k).
3. If α ∈ Bd,k+1 \ Bd,k and β ∈ Bd,k, then β < α and α 5 β.

Proof. Every claim can be shown by an simple induction on k. �

Given a positive natural number n define Bn by

Bn :=

{
Bd+1 if n = 2d

Bd+1,2 if n = 2d− 1 .

We claim
o(Bn, E¹Bn) = otyp(< ¹Bn) = ωn+1 .

3 Maximal order types

In general it is not a simple task to decide the maximal order type of a wpo. Some
interesting methods are introduced in [2,11,4]. However, there is a problem that
in most cases they can be carried out in a long-winded way only. Fortunately,
there is a much more simple way for our case. We are going to take a well-known
wpo and compare it with (Bn, E).

Note first that the two sets Bd+1 and (Bd)∗ are similarly constructed. In
fact, every α ∈ Bd+1 is of the form α = ϕα1ϕα2 · · ·ϕαmo, where αi ∈ Bd.
If β = ϕβ1ϕβ2 · · ·ϕβno ∈ Bd+1 and α1 · · ·αm EH β1 · · ·βn then α E β. And,
though this relationship is not isomorphic, we can in fact show that o(Bd+1, E) =
o((Bd)∗, EH).

We need the following obvious fact.
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Lemma 6. Let (A,¹1) and (B,¹2) be wpo’s and f : A → B an injective func-
tion such that

a ¹1 b ⇐⇒ f(a) ¹2 f(b)

for all a, b ∈ A. Then it holds that o(A) ≤ o(B).

Theorem 7. For any d > 0, o(Bd+1, E) = o(Bd+1 \ Bd,E) = o((Bd)∗,EH) .

Proof. Define f : Bd+1 → (Bd)∗ and g : (Bd)∗ → Bd+1 \ Bd defined as follows:

f(α) :=





ε if α = o

α if α = ϕα1α2 ∈ Bd

α1, f(α2) if α = ϕα1α2 6∈ Bd

and
g(α1, . . . , αm) := ϕα1ϕα2 · · ·ϕαmρd+1(o)

where ε denotes the empty sequence. It is then very easy to show that f and g
satisfy the conditions in Lemma 6. So we have the desired equalities. �
Corollary 8. For any d > 0, (Bd, E) is a wpo and o(Bd,E) = ω2d−1.

Proof. By induction on d > 0. If d = 1, then B1 = {o, ϕoo, ϕo(ϕoo), . . . } is
linearly ordered by E and so o(B1, E) = ω. If d > 1, use I.H., Theorem 7, and
Theorem 3. �
Corollary 9. (B,E) is a well-ordering and o(B) = ε0.

Lemma 10. Let d, k be positive natural numbers. Then

o(Bd,k,E ¹Bd,k) =

{
k if d = 1
ω2(d−1)(k − 1) otherwise .

Proof. Similar to Corollary 8 �.

Theorem 11. o(Bn, E¹Bn) = ωn+1 for any positive natural number n.

4 Order types

We are now going to compute the order types of (Bn, <¹Bn). It is not so obvious
as it might seem. B will be considered as ordinal notation systems based on the
recursive path ordering on strings.

Definition 12 (Recursive path ordering). Let (A,≺) be a well-ordering.
The recursive path ordering ≺rpo on A∗ is defined as follows: Let ε be the empty
list.

– If ε ≺rpo u for u 6= ε.
– If u = au1 and v = bv1, then u ≺rpo v if one of the following holds:
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(i) a ≺ b and u1 ≺rpo v;
(ii) a = b and u1 ≺rpo v1;

(iii) b ≺ a and u ¹rpo v1.

Dershowitz [12] shows that the recursive path ordering preserves the well-
orderedness.

Theorem 13 (Dershowitz). If (A,≺) is a well-ordering, so is (A∗,≺rpo).

Let ξ < ε0 be the order type of ≺ on A and η 7→ aη, η < ξ, the enumer-
ation function of A. Using the idea elaborated by Touzet [13] we are going to
characterize the order type of ≺rpo on A∗.

Lemma 14. For each limit ordinal α < ωωξ

there are unique γ, β, and η < ξ
such that

(i) α = γ + ωωη · β,
(ii) 0 < β < ωωη+1

, and
(iii) there are no µ ∈ ωωη+1 \ {0} and δ ∈ ωωξ

such that γ = δ + µ.

Proof. Let α =NF ωα0 + · · ·+ ωαn . Let η < ξ and j be such that

ωη ≤ αn < ωη+1 and j := min{k : ωη ≤ αk < ωη+1} .

There are δk, j ≤ k ≤ n, such that αj = ωη + δj , . . . , αn = ωη + δn . Hence
α = γ + ωωη · β, where γ =NF ωα0 + · · · + ωαj−1 and β =NF ωδj + · · · + ωδn ,
and η, β, γ satisfy the conditions (ii) and (iii).

We now prove the uniqueness of the decomposition. Let η′, β′, γ′ also satisfy
(i) ∼ (iii). If β =NF ωβ0 + · · ·+ ωβm and β′ =NF ωβ′0 + · · ·+ ωβ′` and if γ is in
Cantor normal form too, then conditions (ii) and (iii) guarantee that

α =NF γ + ωωη+β1 + · · ·+ ωωη+βm =NF γ′ + ωωη′+β′1 + · · ·+ ωωη′+β′`

and hence η = η′. Suppose for instance γ < γ′. Then γ′ = γ + ωωη+β1 + · · · +
ωωη+βp for some p ≤ m. This contradicts (iii). So γ = γ′ and hence m = `,
βk = β′k, 1 ≤ k ≤ m. �

In the sequel, γ+ωωη ·β means always in the sense of Lemma 14. For ordinals
β > 0, −1 + β denotes β − 1 if β < ω and β otherwise.

Definition 15. Let (A,≺) be a well-ordering and otyp(≺) = ξ ∈ ε0 \ {0}. The
function O : ωω−1+ξ → A∗ is defined by:

O(α) :=





ε if α = 0
a0O(β) if α = β + 1
a1+ηO(−1 + β)O(γ) if α = γ + ωωη · β .

Now we are going to show that the definition of ((Bd)∗, <rpo) is just another
way to see (Bd+1, <).
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Theorem 16. Let (A,≺) be a well-ordering. If otyp(≺) = ξ ∈ ε0 \ {0} on A,
then we have on A∗

otyp(≺rpo) = ωω−1+ξ

=

{
ωωξ−1

if ξ ∈ ω \ {0}
ωωξ

otherwise .

Proof. We show that the function O : (ωω−1+ξ

, <) → (A∗,≺rpo) is an isomor-
phism.

1. O is order-preserving, i.e. O(α) ≺rpo O(β) if α < β. Note that the ordering
< on ordinals is the transitive closure of the schemes ∀n ∈ ω(αn < α),
where (αn)n builds a fundamental sequence for α. (The definition of the
fundamental sequence will be directly given below in the proof.) So it suffices
to show that ∀n ∈ ω(O(αn) ≺rpo O(α)) for any α < ξ.
(a) α = β + 1: Then αn = β and O(αn) = O(β) ≺rpo a0O(β) = O(α).
(b) α = γ + ωωη · (β + 1):

– η = 0, i.e. αn = γ + ωω0 · β + n + 1: Then

O(αn) =

{
an+1
0 O(γ) if β = 0

an+1
0 a1O(−1 + β)O(γ) otherwise

≺rpo

O(α) =

{
a1O(γ) if β = 0
a1O(−1 + β + 1)O(γ) otherwise .

– η = η0 + 1, i.e. αn = γ + ωωη · β + ωωη0 · ωωη0 ·n: Then

O(αn) =

{
an+1
1+η0

O(γ) if β = 0
an+1
1+η0

a1+ηO(−1 + β)O(γ) otherwise

≺rpo

O(α) =

{
a1+ηO(γ) if β = 0
a1+ηO(−1 + β + 1)O(γ) otherwise .

– η is a limit ordinal, i.e.αn = γ + ωωη · β + ωωηn : Then

O(αn) =

{
a1+ηnO(γ) if β = 0
a1+ηnaηO(−1 + β)O(γ) otherwise

≺rpo

O(α) =

{
aηO(γ) if β = 0
aηO(−1 + β + 1)O(γ) otherwise .

(c) α = γ +ωωη ·λ, where λ is a limit ordinal: Then αn = γ +ωωη ·λn and
O(αn) = a1+ηO(−1 + λn)O(γ) ≺rpo a1+ηO(−1 + λ)O(γ) = O(α) .
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We have shown that O is order-preserving, so it is injective.
2. Let u ∈ A∗. By induction on the length of u we show that there is an α < ωωξ

such that O(α) = u.
(a) u = ε: O(0) = ε.
(b) u = a0v: Then O(β + 1) = a0v, where O(β) = v.
(c) u = aηv, η > 0: Then let η′ = η if η ≥ ω and η′ = η + 1 otherwise.

– v ∈ {a0, . . . , aη}∗: Let O(−1 + β) = v. Then −1 + β < ωωη′
and

O(ωω−1+η · β) = aηO(−1 + β) = aηv = u .

Note that this case implies, in particular, that O : ωωξ−1 → A∗ is an
isomorphism if ξ ∈ ω \{0}. Indeed, if A = {a0, . . . , aη} and ξ = η+1
then we have just shown that α < ωωη

for α such that O(α) = u.
– v 6∈ {a0, . . . , aη}∗: Let b ∈ A\ {a0, . . . , aη}, v1 ∈ {a0, . . . , aη}∗, and

v2 ∈ A∗ such that v = v1bv2. Let O(−1 + β) = v1 and O(γ) = bv2.
Then O(γ + ωω−1+η · β) = aηO(−1 + β)O(γ) = aηv1bv2 = u . �

Corollary 17. For any d > 0, (Bd, <) is a well-ordering and otyp(< ¹Bd) =
ω2d−1 .

Proof. Note just that (Bd+1, <) is isomorphic to ((Bd)∗, <rpo). �
Corollary 18. (B, <) is a well-ordering and otyp(<) = ε0.

Lemma 19. Let d, k be positive natural numbers. Then

otyp(< ¹Bd,k) =

{
k if d = 1
ω2(d−1)(k − 1) otherwise .

Proof. Similar to Corollary 17. �
Theorem 20. otyp(Bn, < ¹Bn) = ωn+1 for any positive natural number n.

Finally, Theorem 11 and Theorem 20 imply the main claim.

Theorem 21. o(Bn, E¹Bn) = otyp(< ¹Bn) = ωn+1 for any positive natural
number n.
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