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Abstract

This paper introduces a representation style of variable binding using dependent types. Our repre-
sentation is a variation of the Coquand-McKinna-Pollack’s locally-named representation. The main
characteristic of our representation is the use of dependent families in defining expressions such as
terms and formulas. We also showed some hidden utility of simultaneous substitution and simul-
taneous renaming. Consequently, we can deal with definitions and proofs in a more compact way,
among which well-formedness, provability, soundness, and completeness. In order to confirm the
feasibility of our idea we made several experiments using the proof assistant Coq which supports
all the functionalities we need: intentional type theory, dependent types, inductive families, and
simultaneous substitution. Moreover, we could reveal a new aspect of locally-named representation
style that it can be regarded as a nominal approach under the condition that proofs-as-programs is
not a part of the domain of the discourse.

1 Introduction

Around the turn of the 20th century, mathematicians and logicians were interested in
the exacter investigation of the foundation of mathematics and soon realized that ordi-
nary mathematical arguments can be represented in formal axiomatic systems. One of
the prominent figures in this research was Gottlob Frege. His main concern was twofold:
Firstly, whether arithmetical judgments can be proved in a purely logical manner. Secondly,
how far one could go in arithmetic by merely using the laws of logic. In Begriffsschrift
(Frege, 1879), he invented a special kind of language system where statements can be
proved as true based only upon some general logical laws and definitions. Then in the two
volumes of Grundgesetze der Arithmetik (Frege, 1893, 1903) he applied it to provide a
formal system where second order arithmetic can be developed.

Although this system is known to be inconsistent, it contains all the essential materials
necessary to provide a fundamental basis for dealing with propositions of arithmetic based
on an axiomatic system. Indeed it addresses all the three types of concern that can attend
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a mathematical proof which are mentioned in (Avigad & Harrison, 2014): whether the
methods it uses are appropriate to mathematics, whether the proof itself represents a correct
use of those methods, and whether a proof delivers an appropriate understanding of the
mathematics in question.

A main characteristic of Frege’s approach is that truth of statements can be systemat-
ically proved using logical laws and axioms. That is, a rigorous and detailed proof can
be given for each true statements such that every logical inference can be checked when
necessary. This is the main factor why people say that Frege’s work initiated an era of
applying rigorous scientific method for mathematics. Indeed, since his work, logicians and
mathematicians started to consider mathematical systems as axiomatic ones, among which
Peano’s The principles of arithmetic (Peano, 1889), Hilbert’s Grundlagen der Geometrie
(Hilbert, 1899), Russel and Whitehead’s Principia Mathematica (Whitehead & Russell,
1910, 1912, 1913), Zermelo’s axiomatic set theory (Zermelo, 1908), and Church’s type
theory (Church, 1940). We refer to van Heijennoort’s From Frege to Gödel (van Heijenoort,
1967) for more about Frege’s influence on the development of modern logic and mathe-
matics.

In this article, we focus on an aspect of the tradition of applying a rigorous scientific
method for mathematics, namely, formal proof. A formal proof is a proof which is written
in an artificial language and in which every step of the inference can be checked according
to some fixed logical rules and axioms. Note that this is exactly what Frege had in mind
when he developed his system. Indeed, Frege said as follows:

The gaplessness of the chains of inferences contrives to bring to light each
axiom, each presupposition, hypothesis, or whatever one may want to call that
on which a proof rests; and thus we gain a basis for an assessment of the
epistemological nature of the proven law. (Frege, 2013, p. VII).

The only difference between his idea and the present-day practice is that machine has
become ripe enough to assist human in writing down and proving mathematical statements.
There are various computer programs that can check and (partially) construct proofs writ-
ten in their specific programming languages.

More concretely, this paper addresses several issues about the use and role of variables
in proving meta-theories of first-order predicate logic. And some of our ideas go back to
Frege’s understanding of variables in Begriffsschrift (Frege, 1879).

1.1 Motivations

Frege’s notion of variables Frege distinguished between two kinds of signs when he
explained the basic building blocks for constructing syntactic entities like propositions and
proofs:

I therefore divide all signs that I use into those by which we may understand
different and those that have a completely determinate meaning. The former
are letters and they will serve chiefly to express generality. But, no matter how
indeterminate the meaning of a letter, we must insist that throughout a given
context the letter retain the meaning once given to it. (Frege, 1879, p. 11)
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Letters represent some objects like numbers or functions left indeterminate and are
nowadays called variables. And signs that have a completely determinate meaning cor-
respond to function symbols including constants in modern terminology of logic.1 He then
distinguished further between two sorts of letters. He made use of Latin letters a,b,c, etc
to express universal validity of propositions, as in

(a+b)c = ac+bc

and replaced them by old German letters a, b, c, etc in order to state the generality of
judgments, as in

` ∀a∀b∀c [ (a+ b) c= a c+ b c ].
In the modern terminology, Latin letters are called parameters2 or free variables while

German letters are called local variables. This is the reason why people mention Frege as
the first who used two disjoint sets of variables, see e.g. (Sato & Pollack, 2010, p. 599).

Distinguishing between two kinds of variables is also applied later by (Gentzen, 1934)
and (Prawitz, 1965). Local variables play the role of delimiting the scope that the generality
indicated by the letters cover. Indeed, their role is to remember the places within their
scope where “something else” might be substituted, resulting in a less general judgment.
On the other hand, parameters syntactically play no essential role in Frege’s work except
when they are replaced by local variables in stating the generality of judgments. General
substitution, for instance, is only performed when instantiating local variables, that is, when
making statements less general.

This is the point where we believed that there are some aspects of the role of parameters
which might be interesting in relation to mechanization of meta-theories of predicate logic.

Mechanization of logical meta-theories In predicate logic, two sorts of variable binding
are involved: Binding local variables is used for representing universal quantification, as in

` ∀xP(x) ,

and binding parameters is used for representing parametric derivations, as in

A(a) ` B(a) .

In traditional mathematical usage, it is very common to use the same set of variables for
both bindings. However, this common practice is not so practical for the use in a mechan-
ical development of a formal metatheory. The main issue with this approach is that local
variables can sometimes clash with parameters. For instance, the standard definition of
unrestricted substitution for the lambda calculus by (Curry & Feys, 1958, p. 94) causes that
variable capture can occur during substitution and that many proofs involving substitution
are notoriously tedious because substitution is not defined by a structural induction. A
typical way of addressing this issue is to work with α-conversion.

1 Frege himself rejected to use of the word “variable” since it was hardly possible for him to define
it properly. See the footnote by Jourdain on page 10 in (Frege, 1879).

2 Parameters are sometimes called global variables.



ZU064-05-FPR kripke˙trace 23 January 2016 13:43

4 G. Lee, H. Herbelin, and S. Kim

However, dealing with α-conversion formally has turned out to be not so feasible be-
cause it requires huge amount of extra work. One exceptional work is the nominal tech-
niques in Isabelle/HOL (Urban, 2008) which is based on the nominal logic by Pitts et al.
in (Gabbay & Pitts, 2002; Pitts, 2003). However, to the best of our knowledge, there is no
user-friendly work dealing with α-conversion formalized in an intentional proof assistant
such as Coq, Agda, etc.

People, however, recognized that Frege’s idea of distinguishing between the two sorts
of variables can be practically applied in doing machine-checked proofs. (Coquand, 1991)
suggests to use the same idea as Frege’s in order to avoid the need to reason about α-
conversion. Following his suggestion, (McKinna & Pollack, 1993, 1999) extensively in-
vestigates the main characteristics of using two sorts of variables in proving the meta-
theories of lambda calculus and Pure Type Systems. One of the achievements of their
great effort is that many important properties of typed lambda calculus can be stated and
proved without referring to α-conversion, among which Church-Rosser, standardization
and subject reduction.

Another well-known encoding technique of distinguishing between local variables and
parameters is the locally nameless representation. It also uses two sorts of variables, but it
uses names only for parameters while de Bruijn indices are used for local variables. The
locally nameless technique was first experimented by (Leroy, 2007). A larger-scale case
studies using this technique were conducted by (Aydemir et al., 2008). The usefulness
of the locally nameless technique is well summarized by (Charguéraud, 2012). Further
information about the importance of encoding techniques especially when variable binding
is involved can be found in the POPLmark Challenge project (Aydemir et al., 2005).

Constants as parameters We mentioned above that parameters syntactically play no
essential role in Frege’s work except when they are replaced by local variables in stating
the generality of judgments. This fact can be seen in the following two rules about ∀-
quantification where variable binding occurs:

Γ, A(t) `C
Γ, ∀xA(x) `C

(∀L) and
Γ ` A(a) a fresh in Γ,A

Γ ` ∀xA(x)
(∀R) .

They are two rules in the Gentzen-style sequent calculus representing respectively the
left and right introduction rules of ∀-quantification. And they are the only rules where
instantiation of a bound local variable occurs. Note that instantiation of the ∀-quantifier
by an arbitrary term occurs only in (∀L) while in (∀R) a local variable is instantiated by a
parameter. As we will see later in Figure 3 of the whole presentation of the cut-free LJT,
an intuitionistic Gentzen-style sequent calculus, it is unnecessary to consider instantiation
of parameters in the definition of the deduction system.

One may wonder whether there is no more hidden use of binders in the definition of the
proof system based on the fact that some conditions can be imposed on the right implication
rule in proofs-as-programs correspondence with λ -abstraction. Indeed, (Coquand, 1994,
2002) showed that the resulting cut-free proof of a cut-elimination procedure is equivalent
to the original proof up to β -like reduction on the proofs seen as λ -terms. This fact can
also be observed in (McKinna & Pollack, 1999; Leroy, 2007), namely in the proof of the



ZU064-05-FPR kripke˙trace 23 January 2016 13:43

When locally-named becomes nominal 5

subject reduction property which requires the substitution lemma of the following form:

Γ ` N : A Γ, a : A, ∆ `M : B
Γ, ([N/a]∆) ` [N/a]M : [N/a]B

Here one can see that parameters used in the construction of proof terms play the role
of binding in the sense that the variable a occurring in M belongs to the scope of a
from the environment Γ, a : A, ∆. This is the reason why parameters are sometimes called
global variables. In both work, the substitution lemma is given a name. In (McKinna
& Pollack, 1999), it is called substitution lem. In case of (Leroy, 2007), the sub-
stitution lemma divided into two versions. One for the terms, the other for types. The
lemmata has type stable type subst and has type stable term subst state the
corresponding versions.

On the other hand, when the proofs-as-programs correspondence is not on the program,
the right introduction rule of implication can hardly be seen as a form of binding. That is,
if derivability is a predicate and not a part of the domain of the discourse, there is no need
to consider instantiation of parameters. Moreover, it is a commonly accepted fact in proof
theory that opening a binder to replace its bound variable with a fresh parameter amounts
to expanding the language with a new constant. This point might become more clear when
one think of the correspondence between syntax and semantics of the first-order predicate
logic. Given a model of a theory, the interpretation of a constant is a fixed object of the
domain of the given model. But it depends on the theory. Therefore, the interpretation of
a fresh constant can be made arbitrary without affecting the meaning of the given theory.
We also make use this fact later, see Lemma 3.3.

This observation gives rise to a question whether we need parameters at all when we
formalize meta-theories of a logic system. And it drove us to check whether we could show
the same meta-theoretic results even when we do not involve parameters to the language.

1.2 Contributions of the paper

The first contribution of this paper is an answer to the question as explained in the moti-
vation part. That is, we have confirmed the feasibility of using no parameters and letting
constants play the role of parameters in formalizing logical metatheory when proofs-as-
programs correspondence is not on the program. As our target, we took the formalization
of a Kripke-based semantical cut-elimination with respect to LJT.

From the logical point of view, what we have done is very similar to what (Coquand,
1994, 2002) did where she used semantic normalization proof for the implicational propo-
sitional calculus. A main difference is that the derivability is a part of the domain of the
discourse in her work where β -like reduction on the proofs is an important factor. On
the other hand, it is different in our case even though we work with predicate logic with
quantification where variable binding occurs. A version of the substitution lemma is still
necessary in order to prove the completeness of LJT. However, it does not involve any
instantiation of parameters.

The second contribution of this paper is that we provide a reasonable application of
dependent type programming in representing language syntax of a predicate logic. The
core of our idea lies in the definition of terms and formulas. They are defined by dependent
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families. Let m be a list of variables. Then term m (resp. formula m) denotes a family of
terms (resp. formulas) where variables from m possibly occur unbound. That is, the list
m, which we call trace, collects the local variables that possibly occur unbound in a term
or a formula although they are supposed to be bound by a ∀-quantifier.3 Then the family
term nil (resp. formula nil) denotes the set of all well-formed terms (resp. formulas).
Here, nil is a notation for the empty list. Consequently, one can give a more natural
representation of e.g. the derivability predicate without referring to well-formedness extra.
This is a major difference from the style of dealing with well-formedness in (McKinna
& Pollack, 1993, 1999). We give a full explanation of how we applied this idea to the
formalization of our target. We also check out advantages and disadvantages of using
dependent families.

The third contribution of this paper consists in strengthening the importance of simul-
taneous substitution. Some people have already showed the importance of simultaneous
substitution in formal reasoning about languages with binding, among which (Stoughton,
1988), (Coquand, 2002), and (McKinna & Pollack, 1999; Pollack, 2006; Pollack et al.,
2012). Firstly, we show that for our work simultaneous substitution is not a choice, but a
must. Moreover, we present some ways how to work with simultaneous renaming when
the choice for a quantification style matters, see the remark after Theorem 3.6. Secondly,
we discuss how simultaneous substitution can be used in saving infrastructure for a formal
reasoning, even with the locally nameless techniques where numbers are used for local
variables instead of names, see Section 5.

The last contribution of our work is related to the nominal representation. After having
finished our work, we noticed that we can give a different interpretation of termm and
formulam from that given above in the part of the second contribution without changing
anything in the original formalization. And the new interpretation results in a nominal rep-
resentation. In summary, we show that when the Coquand-McKinna-Pollack style locally-
named representation is used without parameters, it results in a nominal representation.
The new interpretation is explained in Section 4 after all the other contributions have been
explained.

1.3 About mechanization

We used the proof assistant Coq (Coq Development Team, 2015) as the programming tool.
Coq provides all the functionalities we need in order to realize our ideas: intentional type
theory, dependent types, inductive families, and simultaneous substitution.4

This paper mainly explains the version with traces in the definition of dependent fam-
ilies of terms term m and formulas formula m where no parameters are allowed. The
formalization of the version both with traces and parameters almost identical.

We did also several experiments with other representation styles in order to check the
utility and feasibility of our ideas, among which simultaneous substitution, simultaneous

3 We remark that our idea follows the usage, common in the theory of lambda calculus, to have a
notation for the set of terms over some set of variables.

4 The Coq proof scripts are available online. Please visit http://formal.hknu.ac.kr/jfp/.
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renaming, quantification style, comparison between simultaneous renaming and swapping
variables. More detail will be given in Section 5.

1.4 Outline of the paper

Section 2 presents the syntactic part of an intuitionistic predicate calculus LJT and dis-
cusses technical details of our formalization, among which simultaneous substitution, re-
naming, and quantification style. Section 3 introduces a Kripke semantics for LJT and
explains the role of simultaneous substitution in establishing meta-theoretic results about
LJT such as soundness, completeness, and cut-admissibility. Section 4 explains our contri-
bution how to get a nominal representation as a variation of the Coquand-McKinna-Pollack
style locally-named representation. Section 5 gives an overview over the whole work what
we did in addition to that we mainly discuss in this paper and discuss advantages and
disadvantages of ideas we suggest.

2 Presentation of the intuitionistic sequent calculus LJT

As is well known, the nominal representation of using one sort of variables is not so feasible
in doing formal proofs in an intentional theorem prover when variable binding is involved.
Still there were some trials to show the feasibility of the nominal representation style such
as Stump’s partial contribution to the POPLmark Challenge. However, in a bigger and more
complicated scale, the notorious problem with variable capture remained unsolved except
for the nominal techniques in Isabelle/HOL (Urban, 2008) which is based on the nominal
logic by Pitts et al. (Gabbay & Pitts, 2002; Pitts, 2003). On the other hand, when one works
with an intentional proof assistant, the locally-named representation (McKinna & Pollack,
1993, 1999) and the locally nameless representation (Aydemir et al., 2008; Charguéraud,
2012) are excellent choices. Each style has it own advantages and disadvantages, but our
interest lies in the locally-named representation because of its use of named variables for
binding.

Our work started with the observation that both representations are too permissive in def-
inition of terms. Some terms could not have meaning because they contain free occurrences
of some local variables which are subject to be bound. This gives rise to the necessity of an
extra syntax for the so-called well-formed terms. And it is a distinctive feature of McKinna
and Pollack’s work that they introduced a way of avoiding appeal to such well-formedness
considerations except in a very small number of places such as the definition of typing
rules. Moreover, their idea is also well adapted to handle the same problem in the locally
nameless representation.

Remark 2.1
There are approaches with two sorts of variables that require no extra syntax for well-
formedness. (Sato & Pollack, 2010), e.g., introduced the so-called internal syntax where
all the expressions are well-formed although two sorts of named variables are used. In fact,
no α-conversion is necessary because all the expressions are unique themselves, as this is
the case with the approach based on de Bruijn indices. However, we deliberately renounce
to consider such approaches because the mechanism they use is not related to our concern.
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In order to remove the necessity of using extra syntax for well-formed terms at all,
we use traces to control the information of local variables occurring in the construction
of terms. Our idea is very close to that used in the typechecker example by (McBride &
McKinna, 2004, Section 7) and the use in Agda of families indexed by Nat to represent
well-scoped terms. And the idea appears to go back to (Bird & Paterson, 1999), (Bird
& Meertens, 1998), and (Altenkirch & Reus, 1999). In Section 5, the relationship with
McBride and McKinna’s work will be explained in more detail.

2.1 A predicate language without parameters

As explained in the introductory part, parameters seem to play no essential roles when
the proofs-as-programs correspondence is not on the program. We also wanted to check
this point and applied our idea to the formalization of a Kripke-based semantical cut-
elimination of the intuitionistic first-order predicate logic, called LJT. We use a version
of the locally-named representation. A main characteristic of the language of LJT is that it
contains local variables, but no parameters.

The language of LJT involves two kinds of expressions, namely terms and formulas.
And the definition of formulas involves universal quantification which is a kind of variable
binding. Therefore, we believed that it provides an appropriate case study to test and
confirm our ideas.

We adopt sequent calculus style derivability to represent proofs. The advantage of such
an approach is that it has an easy-to-define notion of the normal form. A proof is in normal
form when it is merely constructed without using the cut rule.

The language we consider contains → and ∀ as the sole connectives. As for the non-
logical symbols, we assume that the language contains unary predicates symbols, binary
function symbols, and infinitely many constant symbols. Note that this assumption is not
a real restriction. Firstly, every language can be conservatively extended to a language
with infinitely many constants. Secondly, functions or predicates of other arities can be
represented by using binary function symbols.

We use names to represent both local variables and constants. Letters like c,d,ci,di vary
over constants while letters like x,y,xi,yi vary over variables. In addition, f ,g, fi,gi (resp.
P,Q,Pi,Qi) denote function (resp. predicate) symbols.

Remark 2.2

All the sets here mentioned are supposed to be decidable. A set X is decidable if, construc-
tively, ∀u,v∈ X (u= v∨u 6= v) holds, i.e., if there exists a decision procedure to distinguish
between u = v and u 6= v for any two elements of X .

For the formalization, we use (finite) lists to denote finite sets of constants, variables, or
formulas. {x1, ...,xn} stands for the list x1 :: · · · :: xn :: nil. For our purpose, it is sufficient
to define a sublist relation in a set-theoretic manner: A list ` is a sublist of another list k if
` is a subset of k when they are regarded as finite sets. We also use the usual set-theoretic
notations such as ∈, 6∈, ⊆, etc.



ZU064-05-FPR kripke˙trace 23 January 2016 13:43

When locally-named becomes nominal 9

Terms:
x ∈ name (h : x ∈ m)

Varx h ∈ termm
c ∈ name

Cstc ∈ termm
f ∈ function t1, t2 ∈ termm

App f t1 t2 ∈ termm

Here (h : x ∈ m) denotes that h is the proof witnessing that x occurs in the list m.

Formulas:
P ∈ predicate t ∈ termm
Atom(P, t) ∈ formulam

A ∈ formulam B ∈ formulam
A→ B ∈ formulam

x ∈ name A ∈ formula(x :: m)

∀xA ∈ formulam

Contexts: context= list formula= list (formula nil)

Occurrence of variables:

OV(Varxh) = {x}
OV(Cstc) = ∅

OV(App f t1 t2) = OV(t1)∪OV(t2)

OV(Pt) = OV(t)

OV(A→ B) = OV(A)∪OV(B)
OV(∀xA) = OV(A)\{x}

Occurrence of constants:

OC(Varxh) = ∅
OC(Cstc) = {c}

OC(App f t1 t2) = OC(t1)∪OC(t2)

OC(Pt) = OC(t)

OC(A→ B) = OC(A)∪OC(B)
OC(∀xA) = OC(A)

Fig. 1. Terms and formulas without parameters

2.2 Dependent families of terms and formulas

As mentioned before, one of our main ideas is to define terms and formulas as dependent
families.

The type name denotes the set of names. Given a list m of names, the type termm
(resp. formulam) denotes the set of terms (resp. formulas), where local variables from
m possibly occur unbound although they are supposed to be bound by a ∀-quantifier, see
Figure 1.

The side condition (h : x ∈ m) in the definition of Varxh ∈ termm is crucial. In this
manner, we control the information on variables used in the construction of terms and
formulas. Indeed, every variable occurring in a term or a formula occurs already in the
trace:

Lemma 2.3
Let e ∈ termm or e ∈ formulam. Then, OV(e)⊆ m.

Consequently, the set of well-formed terms (resp. formulas) can be syntactically repre-
sented by termnil (resp. formulanil).

2.3 Substitution and trace relocation

The definition of the substitution is a part to which we payed special attention. There
are two reasons. Firstly, in order to establish in a natural way the soundness and the
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Let η = (x1,u1), ...,(xn,un) be an association, where ui ∈ term. Suppose further t ∈ termm and
A ∈ formulam.

1. [` ⇑ η ] t ∈ term` is recursively defined:

[` ⇑ η ] (Varyh) =


Varyh′ if y ∈ `
trelocu j h j if y 6∈ ` and j = min{i : y = xi}
Cst0 otherwise

(1)

[` ⇑ η ] (Cstc) = Cstc

[` ⇑ η ] (App f t1 t2) = App f ([` ⇑ η ] t1)([` ⇑ η ] t2)

Here

• h′ is the proof of y ∈ ` given by the assumption,
• h j is a proof witnessing OV(u j) = nil ⊆ `.

2. [` ⇑ η ]A ∈ formula` is recursively defined:

[` ⇑ η ] (Pt) = P([` ⇑ η ] t)

[` ⇑ η ] (A→ B) = [` ⇑ η ]A→ [` ⇑ η ]B

[` ⇑ η ] (∀xB) = ∀x([x :: ` ⇑ η ]B) (2)

Fig. 2. Simultaneous substitution for terms and formulas

completeness of LJT with respect to a Kripke semantics, it is necessary to work with a
simultaneous substitution, see Theorem 3.1 and Theorem 3.6.

Secondly, because of the trace part, it is not clear to which family the result of a sub-
stitution should belong. Suppose t ∈ term m and s ∈ term m′. There are infinitely many
families to which the result of the substitution of s for a variable in t could belong. Any
term family term` such that OV(t),OV(s) ⊆ ` can be chosen. We then decided to define
substitution such that it respects the following two points:

• Variables supposed to be subsequently bound in a formula should not be considered
generally substitutable for.

• Only well-formed terms have a real meaning.

The idea is as follows. We first declare a trace ` of variables prohibited from being
substituted and then substitute only well-formed terms. The role of ` is well demonstrated
in the abstraction case (2) where the trace is extended by a bound variable x in order to
forbid any substitution for x.

The point is that we know before the substitution is performed where the resulting term
will arrive at. In particular, if `= nil then the result of a substitution is a well-formed term
or a well-formed formula. Later we will see that this makes us work with more intuitive
definitions and proofs, among which the inference rules in Figure 3 and the Universal
Completeness in Theorem 3.6.

For the definition of simultaneous substitution, we use lists of pairs of variables and
well-formed terms. Such lists are called associations. Associations will also be used later
in the semantic part.
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Suppose e is a term or a formula. Let ` be a trace and η = (x1,u1), ...,(xn,un) an
association with ui ∈ termnil for all i. Then

[` ⇑ η ]e

denotes the result of simultaneously substituting ui for xi in e. The simultaneous substitu-
tion operation is defined by a structural recursion as in Figure 2.

Notations. We handle the single substitution [` ⇑ u/x ]e := [` ⇑ (x,u) ]e as a special case.
Furthermore, we write [u/x ]e when `= nil for better readability.

Two points should be mentioned about the definition. Firstly, some variables are ignored
by assigning them Cst0 as in (1). All the free occurrences of variables are supposed to
be covered either by the list ` or by the domain of an association. However, we decided to
ignore some variables in order to argue in a more general setting.

The ignored case could be handled differently, namely by including appropriate extra
propositional arguments witnessing the side condition that OV(e) ⊆ dom(η) or OV(A) ⊆
dom(η) holds. This would make our work more perfect for an application of dependently
typed programming. However, there are several reasons for our choice. More detail will
be given later in Section 5 where our mechanization experience is explained. Here we just
say, the definition given above works most smoothly from the technical point of view.

Secondly, we had to use trace relocation in (1). The substituted term u j is of type
termnil. In order to make typechecking work, we need to relocate it to term`, and this is
the only reason why we need trace relocation.

In the following, notations are simplified for better readability. Given two traces m and
`, the trace relocation operation treloc : termm→ term` is a partial function defined
only for terms t such that OV(t)⊆ `:

treloc(Varx h) = Varx h′ (3)

treloc(Cstc) = Cstc

treloc(App f t1 t2) = App f (treloc(t1))(treloc(t2))

where h′ is a proof of x ∈ `, which can be obtained from OV(t)⊆ `.5

The relocation function is homomorphic in the sense that it does not change or bother any
functionality of terms, both syntactically and semantically. Note just that the proof element
in the definition of a term is inessential so long as the trace contains all the necessary
variables and that treloc(t) does not change anything but the proof part element. In order
to demonstrate that the substitution behaves as expected, we mention two lemmata.

Lemma 2.4 (Substitution Lemma)
Given a trace `, let e be a term or a formula, u ∈ term, and η an association. Then

[` ⇑ u/y ] ([y :: ` ⇑ η ]e) = [` ⇑ (y,u) :: η ]e .

Lemma 2.5 (Relocation has no impact on substitution)

5 The choice of h′ in (3) is irrelevant. One could assume the proof irrelevance axiom or can show
the uniqueness of the membership relation. It works well with Coq.
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Γ | A ` A
(Ax)

Γ | A `C A ∈ Γ

Γ `C
(Contr)

Γ ` A Γ | B `C
Γ | A→ B `C

(→L)
A :: Γ ` B
Γ ` A→ B

(→R)

Γ | [ t /x ]A `C
Γ | ∀xA `C

(∀L)
Γ ` [c/x ]A for some c /∈ OC(A,Γ)

Γ ` ∀xA
(∀R)

Fig. 3. Cut-free LJT

Given a trace `, let t be a term such that OV(t)⊆ k, and η an association. Then

[` ⇑ η ] (treloc(t)) = [` ⇑ η ] t .

2.4 Cut-free LJT and weakening

The Gentzen-style sequent calculus LJT presented in Figure 3 is obtained from the intu-
itionistic sequent calculus LJ by restricting the use of the left introduction rules. A sequent
is either of the form Γ | A `C or of the form Γ `C, where only well-formed formulas are
involved. The location between the vertical bar “|” and the sign “`” is called stoup and
contains the principal formula of the corresponding left introduction rule.

Note that the inference rules can be represented exactly as in Figure 3 without includ-
ing any side condition since a context is of type list(formulanil) and a well-formed
formulas is of type formulanil.

Remark 2.6
(Herbelin, 1994, 1995) and (Mints, 1996) showed that cut-elimination matches normaliza-
tion in the λ -calculus, which is a variant of λ -calculus for the sequent calculus structure.
This implies that LJT supports well the proofs-as-programs correspondence.

The right quantification rule (∀R) requires some explanations. Note first that a fresh
constant c is used in the premise of the rule. This is the point witnessing the fact that a
fresh constant can be used instead of a fresh parameter.

The next one we need to explain is about our choice for the quantification style. It is
enough for the premise of (∀R) to hold for one fresh constant. There are some issues about
this style of quantification such as the fact that it provides too weak an induction principle.
For example, let us try to prove weakening in the following form:

Suppose Γ⊆ Γ′ and Γ ` A. Then Γ′ ` A.

If one tries to prove this lemma by induction on the given deduction, one soon notices
that a renaming lemma of the following form is necessary:

If ∆ ` [c/x ]A holds for a fresh constant c, then ∆ ` [d /x ]A holds for every
fresh constant d.

However, another naive trial to prove it would lead to a vicious circle that now weaken-
ing is necessary. An excellent solution to break this vicious circle is provided in (Pitts,
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2003). He showed that using swapping one can easily prove renaming without appealing
to weakening.

Here we explain another option which enables us to prove weakening and renaming all
together. Proving weakening and renaming simultaneously seems to be a natural idea since
they are somehow mutually dependent. Our idea is to use simultaneous renaming which is
a generalized form of variable swapping.

Simultaneous renaming is a kind of simultaneous substitution where in our case con-
stants are replaced with constants.6 In the following, ρ = (c1,d1), ...,(cn,dn) stands for a
simultaneous renaming. Given a formula A ∈ formulam, ρ A denotes the formula of type
formulam where each constant ci occurring in A is simultaneously renamed to di. Then
ρ Γ is canonically defined for a context Γ. Now we can show the following generalized
version of weakening which can be proved by a simple, structural induction. Weakening
and renaming are special forms of this version.

Theorem 2.7 (Generalized Weakening)
Let A,C be well-formed formulas, Γ,Γ′ contexts such that Γ ⊆ Γ′, and ρ an arbitrary
renaming. Then the following holds:

1. Γ ` A implies ρ Γ′ ` ρ A.
2. Γ | A `C implies ρ Γ′ | ρ A ` ρ C.

Note that no side conditions are imposed on the renaming ρ . Even injectivity is not
required while it is the case with swapping which handles special permutation of variables.
Again this is because derivability is predicate and does not belong to the part of the domain
of the discourse. Otherwise, some kind of bijectivity of the renaming will be necessary
as already demonstrated in (McKinna & Pollack, 1999). We also checked where some
conditions required for the renaming if the proofs-as-terms correspondence is involved.
More detail will be given later in Section 5.

3 Kripke semantics, soundness, completeness, and cut-admissibility

Having seen the basic syntax of LJT and some technically important points for the formal-
ization, we provide in this section a Kripke semantics for LJT.

Kripke semantics was created in the late 1950s and early 1960s by Saul Kripke in
(Kripke, 1959, 1963). It was first introduced for modal logic, and later adapted to intu-
itionistic logic and other non-classical or classical systems (cf. (Troelstra & van Dalen,
1988) and (Ilik et al., 2010)). Here, we use the conventional Kripke model adopted by
Troelstra and van Dalen.

A Kripke model K =(W ,≤,,D ,V ) is a tuple of a partially-ordered set W of worlds, a
domain D , interpretations of constant and function symbols into the domain, and a relation
between worlds, predicates, and domain elements (cf. Figure 4). Interpretation of terms is
based on an association η ∈ list(name∗D). Note that some variables are ignored. This
is necessary to cope with the definition of simultaneous substitution where also some vari-
ables are ignored. Furthermore, the proof term for a list membership is simply neglected.
Consequently, the trace relocation has no impact on the Kripke semantics.

6 If parameters play their own role, then we have to rename parameters.
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Kripke models: K = (W ,≤,,D ,V ), where (W ,≤) is a partially ordered set, D is the domain of
K , V is a function such that

1. V (c) ∈D for all c ∈ name,
2. V ( f ) : D →D →D for all f ∈ function,

and  is a relation between W , predicate, and D such that

if (w≤ w′ and w  Pd) holds, then w′  Pd .

Here w,w′ ∈W , P ∈ predicate, and d ∈D .

Interpretation of terms: Let η ∈ list(name∗D)

(Varxh)[η ] =

{
η(x) if x ∈ dom(η)
V (0) otherwise

(Cstc)[η ] = V (c) (4)

( f t1 t2)[η ] = V ( f )(t1[η ], t2[η ])

Here η(x) = d if (x,d) is the first occurrence in η from left of the form (x, ).

Forcing: The relation  is inductively extended to general formulas.

w  (Pt)[η ] iff w  P(t[η ])

w  (A→ B)[η ] iff for all w′ ≥ w, w′  A[η ] implies w′  B[η ]

w  (∀xA)[η ] iff for all d ∈D , w  A[(x,d) :: η ] (5)

w  Γ iff w  A[nil] for all A ∈ Γ

We sometimes write K when necessary.

Fig. 4. Kripke semantics

Soundness and completeness can be formalized without any difficulty.

Theorem 3.1 (Soundness)
1. Suppose Γ `C holds. For any Kripke model K = (W ,≤,K ,D ,V ) and any w ∈

W , if w K Γ holds, so does w K C[nil].
2. Suppose Γ | A ` C holds. For any Kripke model K = (W ,≤,K ,D ,V ) and any

w ∈W , if w K Γ and w K A[nil] hold, so does w K C[nil].

If we had included parameters and let them play their intended role, the soundness proof
would be very simple to prove as shown in (Herbelin & Lee, 2009). However, because
constants took the role of parameters, the (∀R) rule requires more attention.

Suppose that Γ ` ∀xA follows from Γ ` [c/x ]A for a constant c /∈ OC(A,Γ) and that
w  Γ holds. Then, given an arbitrary d ∈D , we have to show that

w K A[(x,d) :: nil] (6)

holds. At this point, the premise of (∀R) seems to provide too weak an induction hypothesis.
That is, a constant is associated with a fixed value, while the interpretation of the universal
quantification involves all possible values from the domain.

A solution lies in the fact that fresh constants are as good as fresh parameters. Syn-
tactically, this fact is represented by the renaming lemma. At the semantic level, this
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corresponds to creating a new Kripke model from a given one such that the semantics
remains nearly identical.

Definition 3.2
Given a Kripke model K = (W ,≤,,D ,V ), a constant c, and a value d ∈D , we define a
new Kripke model Kc,d := (W ,≤,,D ,Vc,d), where

Vc,d(c′) :=
{

d if c′ = c,
V (c′) otherwise.

That is, K and Kc,d differ only in the evaluation of the constant c. Consequently, we can
present the following lemma:

Lemma 3.3 (Forcing with fresh constants)
Given a formula A and a constant c, if c does not occur in A, then the following holds: For
any Kripke model K = (W ,≤,,D ,V ), any w ∈W , and any d ∈D we have

w K A[η ] ⇐⇒ w Kc,d A[η ]

under the condition that OV(A)⊆ dom(η). (Note that OV(A)⊆ dom(η) trivially holds when
A is well-formed.)

Now, we use Lemma 3.3 to show that w Kc,d Γ. Consequently, by induction hypothesis,
we also have w Kc,d ([c/x ]A)[nil]. Finally, we can prove (6):

w Kc,d ([c/x ]A)[nil] ⇐⇒ w Kc,d A[(x,d) :: nil] (7)

⇐⇒ w K A[(x,d) :: nil],

where the equivalence in (7) follows from the following lemma.

Lemma 3.4
Let A be a formula, u a well-formed term, and ` a trace. Then for any Kripke model K =

(W ,≤,,D ,V ), any w ∈W , and any association η , we have

w K ([`\{x} ⇑ (x,u) :: nil ]A)[η ] ⇐⇒ w K A[(x,u [η ]) :: η ] ,

where `\{x} denotes the trace obtained from ` by removing x.

Formalization of completeness part is done in the same way as in (Herbelin & Lee,
2009). That is, we use the fact that LJT is complete with respect to a universal Kripke
model U defined as follows:

Definition 3.5 (Universal Kripke Model)
U = (context,⊆,U ,termnil,VU ), where

VU (c) = c and VU ( f )(t1, t2) = f t1 t2 .

Furthermore, Γ U Pt iff Γ ` Pt holds.

Note that in the universal model U , the interpretation of terms corresponds to substitu-
tion: Given a term t ∈ termm and an association η = (x1,u1), ...,(xn,un), where ui ∈ term,
we have t[η ] = [nil ⇑ η ] t. The Universal Completeness, as stated below, says that we have
a similar correspondence between forcing and deduction.
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Theorem 3.6 (Universal Completeness)
Let A be a formula, Γ ∈ context, and η be an association. Then, Γ U A[η ] implies
Γ ` [nil ⇑ η ]A.

Note that A used in the universal completeness theorem is an arbitrary raw formula. This
fact and the use of simultaneous substitution enable us to prove this natural correspondence
between syntax and semantics by a simple structural induction on A.

Now the completeness follows.

Theorem 3.7 (Completeness)
Let A be a closed formula and Γ a context. If, for any Kripke model K = (W ,≤,,D ,V )

and any w ∈W , w  A follows from w  Γ, then we have Γ ` A.

A combination of completeness and soundness leads to cut-admissibility.

Theorem 3.8 (Cut-admissibility)
Let A,B be formulas and Γ a context. Then, (Cut) is admissible in LJT:

Γ | A ` B Γ ` A
Γ ` B

(Cut)

Proof
Suppose Γ | A ` B and Γ ` A hold. Then, by Soundness, Γ U A and Γ U B hold, too.
Consequently, Γ ` B holds by the Universal Completeness.

Because (Cut) is a semantically sound rule, a composition of (Soundness) and (Universal
Completeness) normalizes any proof with (Cut) to a cut-free proof.

4 Locally-named representation as a nominal representation

This section explains our last contribution. We claim that, when the Coquand-McKinna-
Pollack style locally-named representation is used without parameters, it results in a nom-
inal representation. In order to support our claim, we only need change the interpretation
of the dependent families termm and formulam.

Until now, we have used the locally-named representation without parameters. That is,
we have used only local variables. Moreover, we have let constants play the role of param-
eters. The main reason why this worked is that the proofs-as-programs correspondence is
not involved.

However, when we look back at the whole formalization, we notice that the local vari-
ables used in an expression are divided into two classes: variables that are really bound by
a quantifition and variables that are not bound by any quantification and controlled by a
trace. Moreover unbound variables behave like “parameters” in the conventional style of
using one sort of variables although their role is took over by constants.

In summary, it looks like as if we used one sort of variables which are usually called
bound or free depending on their locations in an expression. We just gave no role to
“free” variables and let constants play their role instead. This is the reason why we find
the following new interpretation plausible:

• termm denotes the family of terms with possible occurrences of parameters from
the list m.
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• formulam denotes the family of formulas with possible occurrences of parameters
from the list m.

• termnil denotes the family of closed terms, i.e. no occurrences of parameters.
• formulanil denotes the family of sentences.

The rest of our work copes well with this new interpretation without changing anything
in the formalization. Only the meaning of some notations changes, among which:

• only closed terms can be substituted;
• the inference rules are defined only for sentences;
• the domain of the universal model consists of closed terms.

We emphasize again that this new interpretation works since the role of parameters can
be taken over by constants. That is, when one is interested in formalization of a logical
metatheory, but not directly in the proofs-as-programs correspondence, then one could
work with a nominal representation style as we propose in this paper.

In order to check the plausibility of our proposal, we did another formalization of the
same contents. This time we followed the usual style of locally-named representation
without using traces. We tried also two versions, one with parameters and the other without
parameters. Except some differences made by the absence of traces, the formalization for
both versions works almost the same as in the cases with traces. There are nothing special to
be mentioned extra except that we confirmed once more that locally-named representation
approach suits well in spite of variable binding and that locally-named representation can
become nominal in the same way as we demonstrated in this paper.

5 Practical formal metatheory

About using traces. The elements of a trace are not per se relevant, which is reflected
by the fact that trace relocation has no impact on substitution and Kripke semantics. The
only important thing is their occurrence in the trace, which is tracked by proofs of list
membership. This allows names and de Bruijn indices to be superimposed. Indeed their
relationship can be observed when we look at the use of de Bruijn indices in McBride and
McKinna’s typechecker example from (McBride & McKinna, 2004, Section 7):

• The de Bruijn index 0 corresponds to a proof that x ∈ x :: m;
• The de Bruijn successor S on indices corresponds to a proof that x ∈ m implies

x ∈ y :: m.

Another point about using traces is that one can nicely work with syntax, for instance
well-formedness and provability. However, it requires a good support of dependently typed
programming. In case of Coq, working with dependent types is sometimes heavy-going.
And this is one reason why the simultaneous substitution is defined as a kind of partial
function. More detail about why it becomes arduous when we define it in a more depen-
dently typed programming style is explained in a technical report which can be found in
the homepage of this work.7 We have not tested yet, but it could work smoothly with other
tools such as Agda.

7 Please visit http://formal.hknu.ac.kr/jfp/.
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Case studies. In order to check the plausibility of our ideas introduced in this paper, we
took several targets to formalize in Coq. Here we give summary of our experience. A
detailed explanation with many technical issues is given in the above mentioned technical
report.

First, the formalization with traces: In this paper, we introduced only the version without
parameters because our main concern was to check the role of parameters when the proofs-
as-programs correspondence is not involved. The version with parameters has nothing
special to mention. The language there contains parameters, but they play no more role
than that of constants as explained in this paper.

Second, Coquand-McKinna-Pollack’s locally-named representation style: We took the
same target as in the first case, but this time used the Coquand-McKinna-Pollack’s locally-
named representation style. There are also two versions, one with parameters and the other
without parameters. The two versions are all easier to handle because no dependent types
involved.

Third, the soundness of the Church-style simply-typed lambda calculus: This is the case
where we tested our idea of using simultaneous substitution and simultaneous renaming.
We took Leroy’s contribution to the POPLmark Challenge (Leroy, 2007) and slimmed it
down to handle the simply-typed lambda calculus, still using the locally nameless repre-
sentation. The main changes we made are as follows.

• Simultaneous substitution instead of single substitution: We checked that simultane-
ous substitution works well also with de Bruijn indices.
• Simultaneous renaming instead of variable swapping in order to handle weakening

and renaming: We wanted to check the utility of simultaneous renaming in dealing
with weakening and renaming when the conventional style of quantification is used,
that is the quantification style requiring one fresh instantiation. We could show that
simultaneous renaming works well when some injectivity condition is imposed. An
interesting point is that bijectivity is not required as assumed in (McKinna & Pollack,
1999).

Epilogue and acknowlegements

The main idea of this paper is that the Coquand-McKinna-Pollack style locally-named rep-
resentation can be used successfully in formalization of logical metatheory with variable
binding, especially when the proofs-as-programs correspondence is irrelevant, which is
usually the case for logicians and mathematicians. In order to convince the reader, we tried
several experiments, and all the experiments we made confirmed that our idea works well
in spite of some technical issues.

The point in the last contribution explained in Section 4 is recognized when we pondered
on a comment made by an anonymous referee from a previous, unsuccessful trial to a
publication. We would like to express our sincerest thanks to him/her for this and many
other constructive comments. This paper is revised mainly based on his/her comments.
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