
Noname manuscript No.
(will be inserted by the editor)

Formalizing Logical Metatheory
Semantical Cut-Elimination using Kripke Models for first-order
Predicate Logic

Hugo Herbelin · Gyesik Lee

Received: date / Accepted: date

Abstract We propose a new approach to dealing with binding issues when formalizing
the metatheory of a logical system with variables such as first-order predicate logic.
In our approach, the syntax is represented with locally traced names. The style is
similar to Pollack-McKinna’s locally-named approach, in which two sorts of named
variables are used. The main difference is that (locally bound) variables occurring in
an expression are controlled by the type of that expression. This approach has been
adopted to formalize in Coq a Kripke-based semantical cut-elimination of intuitionistic
first-order predicate logic.

The five main features of this paper are as follows. First, we show that the roles
of constants and free variables can be merged in studying the metatheory of a logical
system. Second, there is no need for an extra syntax for well-formed terms and formulae.
Third, we emphasize the role of simultaneous substitution and renaming. Fourth, the
so-called Exists-Fresh quantification style, the traditional method used to address the
binding problems, is revisited. Fifth, the cut-elimination is based on normalization by
evaluation (NBE).

During the formalization work, we attempted to employ common statements for
logicians, and we have also retained the simplicity of the programming part.

Keywords Formalization with binders · locally traced names · normalization by
evaluation · intuitionistic predicate logic · cut-elimination · Coq

1 Introduction

In formalizing the metatheory of a predicate logic, two sorts of binding are involved:
locally bound variables are used for representing universal quantification, and globally

Grants or other notes

Hugo Herbelin
INRIA & PPS, Paris Université 7, Paris, France
E-mail: Hugo.Herbelin@inria.fr

Gyesik Lee
Hankyong National University, Anseong-si, Kyonggi-do, Korea
E-mail: gslee@hknu.ac.kr



2

bound variables (that are themselves bound in the right introduction rule of the uni-
versal quantification) are used for representing parametric derivations.1 In this paper,
variables stand for the (locally bound) variables such as x in ∀xP (x), whereas param-
eters are (globally bound, i.e., free) variables in parametric derivations such as x in a
derivation of the sequent A(x) ` B(x).

In traditional (informal) mathematical usage, the same set of variables is used for
both variables and parameters. The main issue in this approach is the possible capture
of a parameter by a variable during substitution of a term in an expression. A typical
way of addressing this issue is to ensure that all the parameters are always distinct
from the variables. The use of α-conversion makes this possible.

However, during the mechanical development of a formal metatheory, the repre-
sentation and manipulation of expressions with variable binding is a tricky issue. The
main reason is that α-conversion usually gives rise to a large quantity of extra work.
This is an obstacle to formal development in general. To the best of our knowledge,
there is no user-friendly nominal representation in Coq, which simulates the traditional
practice of using a single set of named variables.

In this study, we propose a new first-order approach to the formal representation of
logical formal systems with variable binding. Previously several widely used technical
approaches, each with many variations, have been investigated extensively. We do not
try to cover these studies here; we just refer the reader to some papers that include
such discussion (cf. [2,3,7,12,13,23,27]).

Our approach is similar to McKinna-Pollack’s locally-named representation [22,
23]: variables and parameters are represented by two sorts of named variables. The
syntactic distinction makes it possible to essentially work with substitution without
being concerned with variable capture. A main feature of our approach is that the sets
of terms and formulae depend on a list of variables, called a trace, that might be used
during the term or formula construction.2 This is the reason why we call our represen-
tation style representation with locally traced names. An important consequence is that
we can talk about well-formed terms and formulae without defining an extra syntax.
(Well-formed expressions are those with an empty trace.)

We remark that there are approaches with two sorts of variables that require no
extra syntax for well-formedness. Sato and Pollack [25], e.g., introduced the so-called
internal syntax where all the expressions are well-formed although two sorts of named
variables are used. In fact, no α-conversion is necessary because all the expressions are
unique themselves, as this is the case with the approach based on de Bruijn indices.
However, we deliberately renounce to use such approaches because they require special
counting mechanisms for deciding binding variables to be used.

To demonstrate the expressiveness and feasibility of our approach, we have for-
malized in Coq a Kripke-based semantical cut-elimination of intuitionistic first-order
predicate logic. The mechanization is carried out in two styles, one with parameters

1 One may also wonder whether there is no more hidden use of binders in the definition of the
proof system based on the fact that some conditions can be imposed on the right implication
rule in proofs-as-programs correspondence with λ-abstraction. Indeed, Coquand [8] showed
that the resulting cut-free proof of a cut-elimination procedure is equivalent to the original
proof up to β-like reduction on the proofs seen as λ-terms. However, in this paper, where proofs-
as-terms correspondence is not in the program, the right introduction rule of implication can
hardly be seen as a form of binding

2 It is not a new idea to use indexed types to carry around the possible freely occurring
names, cf. [4,1,21]. However, our work is a specific and practical realization of this idea.



3

and the other without parameters. The difference between the two styles will be ex-
plained in Section 3. The structures of both mechanizations are nearly identical. This
paper is based on the version without parameters. The Coq proof scripts are available
online.3

Outline of the paper The main features of the paper are summarized in Section 2.
In Section 3, we explain parameters and variables in greater detail. In Section 4, we
formally introduce representation with locally traced names. Intuitionistic sequent cal-
culus LJT, Kripke semantics, soundness and completeness are presented in Section
5. In Section 6, we discuss certain issues with respect to our choice of Exists-Fresh
quantification style. Section 7 concludes the paper.

2 Main features of the paper

The five main features of this paper are as follows. First, we address a metatheoretic
issue on parameters. We investigate the roles of constants and parameters, and we show
that a fresh constant can play exactly the same role as a fresh parameter. In other
words, there is no real difference between parameters and constants. The basic idea is
as follows: Assume we have a Gentzen-style derivation for Γ ` A in which parameters
a1, ..., an could possibly occur. Metatheoretically, this means that ∀a1 · · · an[Γ ` A]
holds. That is, the derivation is valid for arbitrary, but fixed values a1, ..., an.

The consequences are manifold: There is no concern regarding variable capture
during substitution, substitution is not required for parameters, and a more compact
formalization (simpler definitions and shorter proof terms) can be achieved.

Second, even if two sorts of variable names are used, no extra syntax for well-
formed terms and formulae is necessary. This significantly reduces the syntax part
during formalization.

Third, the so-called Exists-Fresh quantification style, the traditional method of
dealing with the binders, is used in the formalization:

Γ ` [ c / x ]A for some c /∈ OC(A,Γ )

Γ ` ∀xA (Exists-Fresh)

Here, [ c / x ]A denotes the well-formed formula resulting from A by substituting a
constant c for x, and OC(∆) denotes the set of constants occurring in the context ∆.
(Note that we use fresh constants as fresh parameters.)

We chose the Exists-Fresh style because it closely resembles the pen-and-paper
style. In spite of its unpopularity, we believe that it is the best approach when one
wants to follow the usual style of mathematical logic. Here, we show how the difficulties
in using the Exists-Fresh style in a formalization work can be addressed.

Fourth, we emphasize the role of simultaneous substitution and renaming. Using
simultaneous substitution, we can establish the relationship between syntax and se-
mantics in a natural way (cf. Universal Completeness Theorem).

Further, they play an essential role in showing that the Exists-Fresh style is ade-
quate for dealing with quantification.4 And the equivalence of three well-known quan-
tification styles (Exists-Fresh, Cofinite, and All-Fresh styles) can be easily proved.
Although the equivalence is already known, our proof reveals certain new aspects of

3 Please visit http://formal.hknu.ac.kr/Kripke/.
4 See also the discussion in Section 4 of Aydemir et al. [3].

http://formal.hknu.ac.kr/Kripke/


4

simultaneous substitution and renaming. In fact, it is not necessary to have any kind
of strengthened induction principles such as the well-founded induction on the length
of an expression or on the length of a proof.

Fifth, the cut-elimination is based on normalization by evaluation for intuitionis-
tic first-order predicate logic: A composition of completeness and soundness leads to
cut-elimination. Because all the proofs are constructive, our work can be seen as an
extension of Coquand’s work [8,9], where first-order propositional logic is the main
object. Refer to Berger et al. [5] and Berger and Schwichtenberg [6] for more details
regarding normalization by evaluation.

3 Variables, constants, and α-conversion

Parameters and variables When we look at the following informal right introduction
rule of ∀-quantification, we can make some observations:

Γ ` A(y) y fresh in Γ,A
Γ ` ∀xA(x)

First, the ∀-quantification is part of the domain of discourse because it is generally
considered up to α-equivalence: The actual name of x in ∀xA(x) is irrelevant.

Second, the ∀-quantifiers are instantiated by terms that do not contain variables.
Instantiation of quantifiers by terms occurs in the left introduction rule of the ∀-
quantification and in the definition of the semantics of universally quantified formulae.

Third, there is no need to consider instantiation of parameters in the definition of
the deduction system.

Fourth, if derivability is a predicate and not a part of the domain of the discourse,
there is no need to consider derivation up to the actual name of the parameters.

However, the need for α-conversion over parameters and instantiation of parameters
will arise if derivability is lifted as the object of the domain of discourse as in Coquand
[8,9]. She showed that the cut-free derivation obtained by semantic cut-elimination
actually implements β-normalization and η-expansion over derivations.

Constants as parameters The intended meaning of a derivation in which parameters
occur as in A(x) ` B(x) is the collection of all derivations obtained by instantiating
the variables by arbitrary, but fixed terms. However, parameters are not instantiated
by any rule. Further, as we will see in Lemma 16 and Lemma 24, we can replace a fresh
constant with arbitrary terms when it does not occur in any assumptions.

All these facts suggest that parameters can be regarded as constants even though
this might appear counter-intuitive: A constant is supposed to represent a given ob-
ject, and not a collection. In fact, special attention is required in establishing relations
between syntax and semantics (cf. the soundness proof of Theorem 14). An impor-
tant consequence of considering parameters as constants at the syntactic level is that
substitution is needed only for variables.

To do this, the language itself needs to contain infinitely many constants. Note
that every language can be conservatively extended to a language with infinitely many
constants. It is also noteworthy that even if we formally introduce parameters, the
substitution for parameters do not play any role (cf. the Coq formalization with pa-
rameters).



5

On the purpose of α-conversion We remark that terms that differ only by the names of
variables are not considered to be equivalent. This may be surprising as it departs from
the common usage of reasoning modulo α-conversion. For example, in McKinna and
Pollack [22,23], where the metatheory of Pure Type systems is formalized, α-conversion
is necessary in showing the Church-Rosser property.

In our work, where derivability is a predicate and not a part of the domain of the
discourse, it is harmless because for any derivation that would consider some formulae
modulo α-conversion, there is another one that differs from the original only by the
names of variables, and that does not need α-conversion.

Let ` be a first-order proof system (such as the one in Figure 4) and `α
≡
its extension

with the rule
Γ ` A Γ

α
≡ Γ ′ A

α
≡ A′

Γ ′ ` A′

where A
α
≡ A′ is the α-conversion on formulae and Γ

α
≡ Γ ′ is its canonical extension to

contexts. The following postponement result justifies the uselessness of α-conversion:

Lemma 1 Γ `α
≡
A iff there exist Γ ′

α
≡ Γ and A′

α
≡ A such that Γ ′ ` A′

An informal5 proof is by induction. Most of all, we have to ensure that α-conversion
commutes with every rule of the logic. The rules that instantiate a binder require special
attention. Let us assume that the last rule of the derivation has one of the following
forms:

Γ `α
≡
A(t)

Γ `α
≡
∀xA(x)

Γ,A(t) `α
≡
B

Γ,∀xA(x) `α
≡
B

By induction there is A′(t)
α
≡ A(t), Γ ′

α
≡ Γ , and B′

α
≡ B such that Γ ′ ` A′(t) or

Γ ′, A′(t) ` B′ hold. Subsequently, we merely have to select a fresh y not used as a
binder in A′ and build ∀y A′(y) which by construction satisfies ∀y A′(y)

α
≡ ∀xA(x). ut

4 Representation with locally traced names

The usage of two sorts of variable names was first implemented by McKinna and
Pollack [22,23] to formalize the Pure Type System (PTS) metatheory, following the
suggestion by Coquand [10]. However, there are certain limitations. For example, not
all syntactic expressions are meaningful because variables could occur unbound. This is
also the case, even though parameters are replaced by constants. Therefore, it is usually
required to provide an extra syntax for the definition of well-formed expressions.6

Here, we introduce a new first-order approach, where no extra syntax is necessary
for well-formed expressions, even though variables and parameters are syntactically
distinguished. The explanation will be provided by demonstrating how to formalize
the relationship between intuitionistic first-order predicate logic and Kripke semantics.

For the presentation of predicate logic, we adopt sequent calculus to represent
proofs. The advantage of such an approach is that it has an easy-to-define notion of
the normal form (it is merely the absence of the cut rule). A disadvantage is that it is
less natural than the so-called natural deduction; however, such a structure has already
been used by Coquand [8] and we found it interesting to try an alternative approach.

5 We do not provide any formal work regarding α-conversion.
6 In McKinna and Pollack [22,23], well-formed expressions are called variable-closed while

they are called locally closed in Aydemir et al. [3].



6

Let name := nat and m ∈ list name.

Pseudo-terms:

x ∈ name (h : x ∈ m)

Bvarxh ∈ ptermm
c ∈ name

Cst c ∈ ptermm
f ∈ function t1, t2 ∈ ptermm

App f t1 t2 ∈ ptermm

where (h : x ∈ m) denotes that h is the proof that x occurs in the list m.

Pseudo-formulae:

P ∈ predicate t ∈ ptermm

Atom (p, t) ∈ pformulam
A ∈ pformulam B ∈ pformulam

ImplyAB ∈ pformulam

x ∈ name A ∈ pformula (x :: m)

ForallxA ∈ pformulam

Notations: P t = Atom(P, t), A→ B = ImplyAB, ∀xA = ForallxA.

Contexts: context = list formula = list (pformula nil)

Occurrence of constants:

OC(Bvarxh) = ∅
OC(Cst c) = {c}

OC(App f t1 t2) = OC(t1) ∪ OC(t2)

OC(P t) = OC(t)

OC(A→ B) = OC(A) ∪ OC(B)

OC(∀xA) = OC(A)

Occurrence of variables:

OV(Bvarxh) = {x}
OV(Cst c) = ∅

OV(App f t1 t2) = OV(t1) ∪ OV(t2)

OV(P t) = OV(t)

OV(A→ B) = OV(A) ∪ OV(B)

OV(∀xA) = OV(A)\{x}

Fig. 1 Pseudo-terms and -formulae without free variables

The language we consider contains→ and ∀ as the sole connectives as well as count-
ably many constants. We use natural numbers to denote both variables and constants.7

Bvar stands for the denotation of variables while Cst represents constants.
We let c, d, ci, di vary over constants while x, y, xi, yi vary over variables. For sim-

plicity, we assume two denumerable and decidable sets: predicate of unary predicates
and function of binary functions.8 Note that a set X is decidable if, constructively,
∀u, v ∈ X (u = v ∨ u 6= v), otherwise said, if there exists a decision function f from
X × X such that u = v ↔ f(u, v) = 0. The symbols f, g, fi, gi (resp. P,Q, Pi, Qi)
denote function (resp. predicate) symbols.

Remark 2 For the formalization, we use (finite) lists to denote finite sets of constants,
variables, or formulae. For our purpose, it is sufficient to define sublist in a set-theoretic
manner: A list ` is a sublist of another list k if ` is a subset of k when regarding them
as sets. (The base library for sublist is called sublist.v. It contains 1 definition and
16 very simple lemmata.)

However, in this paper, we also use the usual set notations. The notation ∈ and 6∈
are used with respect to the being-in-a-list relation. nil stands for the empty list, and
x1, ..., xn stands for the list x1 :: · · · :: xn :: nil.

7 In fact, any decidable, denumerably infinite set can be used instead of natural numbers.
We use natural numbers for simplicity.

8 We remark that our assumption causes any loss of generality because functions or predi-
cates of other arities can be represented by using binary function symbols.



7

Terms and formulae as inductive families Given a list of names m ∈ list name,
ptermm and pformulam denote the set of pseudo-terms and pseudo-formulae, respec-
tively (see Figure 1). Intuitively, the list m, which we call trace, collects the variables
that possibly occur unbound. We use the notation “pseudo-” because some variables
can occur unbound while they are supposed to be bound by a ∀-quantifier. (Note that
our approach follows also the usage, common in the theory of lambda calculus, to have
a notation for the set of terms over some set of variables.)

The side condition (h : x ∈ m) in the definition of Bvarxh ∈ ptermm is a crucial
feature of the entire formalization. In this manner, we control the information on
variables used in the construction of pseudo-terms or -formulae:

Lemma 3 Let e ∈ termm or e ∈ pformulam. Then, OV(e) ⊆ m. In particular, OV(e)
is an empty list when e is a well-formed term or a formula.

In particular, this means that the well-formed terms (resp. formulae) are represented
by the elements of ptermnil (resp. pformulanil):

term := ptermnil and formula = pformulanil

There are meta-level reasons as to why the compact handling of well-formed ex-
pressions is important. First, only well-formed terms and formulae have a meaning
and correspond to ordinary terms and formulae in the traditional pen-and-paper style.
Another point is that some useful properties hold only for well-formed terms and for-
mulae. For example, deduction rules are intended to be applied only for well-formed
formulae (see Figure 4).

Syntactic decidability Because we work with sequent calculus, it is necessary to
check whether a pseudo-formula occur in a context, which is a list of (well-formed)
formulae (see Figure 4). For this, we need to decide the syntactic equality of two
expressions.

The syntactic decidability suggests another important point of our approach: α-
equivalence of formulae is the equality of the underlying skeleton where names have
been dropped while proofs “h” have been kept. In some sense, this is very similar
to what happens in the internal representation of Coq terms where names are kept
internally for printing purposes while de Bruijn indices are used for reference purposes.
With our definition, the important part is the proof “h”, which is a canonical index
(some “nth” from the list m, as explained in Lemma 3). The names in this case are
inessential, withm specifying the order in which the names are numbered. Compared to
the standard locally-named representation that has no control of the exposed variables,
we superimpose de Bruijn indices and names so that α-equivalence (implicit in Theorem
5 below) is easily checked.

To decide whether two pseudo-terms are syntactically equal, the being-in-a-list
condition should be decidable. Therefore, we use the following definition that is equiv-
alent9 to the standard one from the Coq library for lists: Given a decidable set X and
m ∈ listX,

x ∈ y :: m iff if x = y then True else x ∈ m.

This definition enables us to have the proof unicity of being-in-a-list relation: Given a
trace, the proof part in the definition of a variable is uniquely defined.

9 This equivalence enabled us to freely access all the existing standard libraries for lists.



8

Let m and ` be traces.

1. A partial function trelocm,` : ptermm → pterm `, defined only for terms t such that
OV(t) ⊆ `, is recursively defined: (treloc denotes trelocm,`, for simplicity.)

treloc(Bvarxh) = Bvarxh′ (1)
treloc(Cst c) = Cst c

treloc(App f t1 t2) = App (treloc(t1)) (treloc(t2))

where h′ is a proof of x ∈ `, which can be obtained from the assumption OV(t) ⊆ `.

2. A partial function frelocm,` : pformulam→ pformula `, defined only for formulae A such
that OV(A) ⊆ `, is recursively defined: (freloc denotes frelocm,`, for simplicity.)

freloc(P t) = P (treloc(t))

freloc(A→ B) = freloc(A)→ freloc(B)

freloc(∀xC) = ∀x (freloc(C))

where freloc(C) = frelocx::m,x::`(C) depends on the fact that OV(C) ⊆ x :: ` which
trivially follows from OV(∀xC) ⊆ `.

Fig. 2 Trace relocation

Lemma 4 (Proof unicity of being-in-a-list) Let X be a decidable set, x ∈ X, and
m ∈ listX. Then

∀(p, q : x ∈ m) [p = q] .

Now, the syntactic decidability follows easily.

Theorem 5 (Syntactic decidability) Let m be a trace.

1. ∀(t, s : ptermm) (t = s ∨ t 6= s).
2. ∀(A,B : pformulam) (A = B ∨ A 6= B).

Trace relocation Even if we have the proof unicity of being-in-a-list, a pseudo-term
or a -formula syntactically belongs to infinitely many classes: a term t from ptermm
belongs also to pterm k for all traces k including m as a sublist.

For any pseudo-term t ∈ ptermm, the set k = OV(t) ⊆ m is the canonical and
smallest trace such that t ∈ pterm k. We use this property to relocate the type of t
using a homomorphic function from ptermm to pterm ` when OV(t) ⊆ `. The relocation
function is homomorphic in the sense that it preserves syntactic and semantic properties
such as syntactic decidability, substitution, and validity in a Kripke model. (See Lemma
7, Lemma 9, and Theorem 11.) We emphasize that trace relocation is necessary to deal
with substitution (cf. Figure 3).

The relocation function presented in Figure 2 is based on the fact that the being-
in-a-list part is inessential so long as the trace contains all the variables needed for
the construction of an expression e, i.e., OV(e). Note also that trelocm,`(t) does not
change anything in t, but in the being-in-a-list part, and that the choice of h′ in (1) is
not important because of the proof unicity. This indicates that repeated application of
relocation is equivalent to a single application and that the syntactic equality between
two expressions is preserved during trace relocation.

In the following lemmata, we omit necessary variable conditions for a simple pre-
sentation.



9

Let m, ` be traces and η = (x1, u1), ..., (xn, un) be an association, where ui ∈ term. Further,
t ∈ ptermm and A ∈ pformulam.

1. [ ` ⇑ η ] t ∈ pterm ` is recursively defined by:

[ ` ⇑ η ] (Bvar y h) =


Bvar y h′ if y ∈ `
trelocuj hj if y 6∈ ` and j = min{i : y = xi}
Cst 0 otherwise

(2)

[ ` ⇑ η ] (Cst c) = Cst c

[ ` ⇑ η ] (App f t1 t2) = App f ([ ` ⇑ η ] t1) ([ ` ⇑ η ] t2)

where
– h′ is the proof of y ∈ ` given by the assumption,
– hj is a proof-term witnessing OV(uj) = nil ⊆ `.

2. [ ` ⇑ η ]A ∈ pformula ` is recursively defined by:

[ ` ⇑ η ] (P t) = P ([ ` ⇑ η ] t)
[ ` ⇑ η ] (A→ B) = [ ` ⇑ η ]A→ [ ` ⇑ η ]B

[ ` ⇑ η ] (∀xB) = ∀x ([x :: ` ⇑ η ]B) (3)

Fig. 3 Simultaneous substitution with destination

Lemma 6 (Idempotence) Assume e ∈ ptermm or e ∈ pformulam. Then,

reloc`,k(relocm,`(e)) = relocm,k(e)

where reloc denotes treloc or freloc depending on e.

The following lemma says that relocation functions preserve equality.

Lemma 7 (Equality preservation) Assume e, e′ ∈ ptermm (or e, e′ ∈ pformulam).
Then, relocm,`(e) = relocm,`(e′) as soon as e = e′. Here, reloc denotes treloc or
freloc depending on e, e′.

The overhead for dealing with relocation is very small. In addition to the two
definitions for treloc and freloc, we needed only 14 lemmata, which are all proved
in several lines.

Substitution with destination The definition of a substitution requires special con-
sideration for two reasons.

First, the relationship between syntax and semantics such as soundness and com-
pleteness should be realized in a natural way. For this purpose, we find that simulta-
neous substitution provides a convenient way in establishing the relationship, see the
Soundness (Theorem 14) and the Universal Completeness (Theorem 18). In Section 6,
we will also see that simultaneous renaming of constants plays an important role.

The simultaneous substitution of finitely many terms for variables in a pseudo-term
or a -formula is defined by a structural recursion as in Figure 3. Only well-formed terms
are substituted because substituting pseudo-terms could cause capture of variables.

Second, because of the trace part, it is not clear to which class the resulting ex-
pression of a substitution should belong. Thus we decided to state clearly the type of
the resulting expression in the definition of substitution.



10

Let e be a pseudo-term or a -formula, ` a trace, η = (x1, u1), ..., (xn, un) an asso-
ciation, where ui ∈ term. Then [ ` ⇑ η ] e denotes the simultaneous substitution of ui
for xi, 1 ≤ i ≤ n, in e. The single substitution [ ` ⇑ u / x ] e := [ ` ⇑ (x, u) ] e is then a
special case. Furthermore, we write [u / x ] e when ` = nil for better readability.

The type of the resulting expression depends on `, not on the type of e. Intuitively,
` is the list of variables for which no substitution is allowed. The role of ` is well
explained by the the abstraction case (3) in Figure 3, where ` is extended by x in order
to forbid any substitution for x. Note that all insignificant variables are simply ignored
by assigning them Cst 0. They are variables occurring neither in ` nor in x1, ..., xn, cf.
(2).

In particular, we have [nil ⇑ η ] t ∈ term and [nil ⇑ η ]A ∈ formula independent
of the type of t or A. Consequently, we can use more intuitive definitions and proofs.
For example, the left introduction rule of universal quantification in Figure 4 can be
formalized in the following form

Γ | [ t / x ]A ` C
Γ | ∀xA ` C

without referring to the well-formedness of [ t / x ]A. Another case is the Universal
Completeness (Theorem 18), in which simultaneous substitution with destination is
effectively used for a natural correspondence between semantics and syntax. A detailed
explanation is given in Remark 19.

In order to demonstrate that the substitution behaves as expected, we state two
lemmata:

Lemma 8 (Substitution Lemma) Given two traces m and `, let e ∈ ptermm or
e ∈ pformulam, u ∈ term, and η an association. Then we have

[ ` ⇑ u / y ] ([ y :: ` ⇑ η ] e) = [ ` ⇑ (y, u) :: η ] e .

Lemma 9 (Relocation and substitution) Given three traces k,m, and `, let e ∈
ptermm or e ∈ pformulam and OV(e) ⊆ k. Then we have

[ ` ⇑ η ] (relocm,k(e)) = [ ` ⇑ η ] e ,

where reloc is treloc or freloc depending on e. That is, relocation has no impact on
substitution.

5 Intuitionistic sequent calculus LJT and Kripke semantics

Having defined the basic syntax, we provide in this section the deduction rules and a
Kripke semantics for the Gentzen-style sequent calculus LJT. We will establish that
LJT is sound and complete with respect to the Kripke semantics.

5.1 Intuitionistic sequent calculus LJT

For the presentation of predicate logic, we adopt sequent calculus to represent proofs.
The advantage of such an approach is that it has an easy-to-define notion of normal
form (it is merely the absence of the cut rule). A disadvantage is that it is less natural



11

Γ | A ` A (Ax)
Γ | A ` C A ∈ Γ

Γ ` C (Contr)

Γ ` A Γ | B ` C
Γ | A→ B ` C (→L)

A :: Γ ` B
Γ ` A→ B

(→R)

Γ | [ t / x ]A ` C
Γ | ∀xA ` C (∀L)

Γ ` [ c / x ]A for some c /∈ OC(A,Γ )
Γ ` ∀xA (Exists-Fresh-∀R)

Fig. 4 Cut-free LJT

than the so-called natural deduction. However, natural deduction has already been
used in Coquand [8] and we found interesting to try an alternative approach.

The Gentzen-style sequent calculus LJT presented in Figure 4 is obtained from
the intuitionistic sequent calculus LJ by restricting the use of the left introduction
rules of the implication and the universal quantification. A sequent has one of the
forms Γ | A ` C or Γ ` C, where A,C are well-formed formulae and the context
Γ = A1, ..., An is a list of well-formed formulae. The right side of the vertical bar “|”
in the antecedent is called stoup, and it contains the principal formula (Hauptformel)
of the corresponding rule.

Herbelin [14,15] and Mints [24] showed that there is a one-to-one correspondence
between cut-free proofs in LJT and normal λ-terms. To be more precise, cut-elimination
matches normalization in the λ-calculus, which is a suitable variant of λ-calculus for the
sequent calculus structure. This implies that LJT is a Curry-Howard-de Bruijn-style
proof system.

Remark 10 The Curry-Howard-de Bruijn approach requires the ability to distinguish
between the different occurrences of a given formula in the context Γ of a sequent
Γ ` A. There are two canonical ways to achieve this: one either considers contexts as
sets of named formulae, where the names are used to distinguish between the different
occurrences of the same formula, or one considers contexts as list (i.e., ordered sets)
of formulae, in which case the underlying order provides a way to distinguish between
different occurrences of the same formula.

On the other hand, considering contexts as sets precludes the correspondence with
λ-calculus as, for instance, there would be only one proof of A → A → A while there
are two λ-terms of type A → A → A. Strictly speaking, considering contexts as mul-
tisets does not help since there is no way to distinguish between two instances of the
same formula in a multiset. If the multiset is equipped with a convention to distinguish
between the different occurrences of the same formula (e.g., Troelstra and Van Dalen’s
crude discharge convention [26, Ch. 1]), this amounts to giving names to formulae (see
Geuvers [11] for a discussion).

For our work, however, Curry-Howard-de Bruijn correspondence itself is not on the
program. Once again. this is because derivability is a predicate and not a part of the
domain of the discourse. Furthermore, contexts can be regarded as finite sets although
we used lists of formulae to represent them.

We emphasize that all the formulae occurring in derivations are well-formed for-
mulae and that the deduction rules can be represented exactly as in Figure 4. This is
possible because we can primarily focus on formula = pformulanil. Note that typing



12

Kripke models: K = (W,≤,,D, V ), where (W,≤) is a partially ordered set, D is the domain
of K, V is a function such that

1. V (c) ∈ D for all c ∈ name,
2. V (f) : D → D → D for all f ∈ function,

and  is a relation between W, predicate, and D such that

if (w ≤ w′ and w  P d) holds, then w′  P d .

Here w,w′ ∈ W, P ∈ predicate, and d ∈ D.

Interpretation of pseudo-terms: Let η ∈ list (name ∗ D)

(Bvarxh)[η] =

{
η(x) if x ∈ dom(η)

V (0) otherwise

(Cst c)[η] = V (c) (4)
(f t1 t2)[η] = V (f)(t1[η], t2[η])

Here η(x) = d if (x, d) is the first occurrence in η from left.

Forcing: The relation  is inductively extended to general sentences in the extended language.

w  (P t)[η] iff w  P (t[η])

w  (A→ B)[η] iff for all w′ ≥ w, w′  A[η] implies w′  B[η]

w  (∀xA)[η] iff for all d ∈ D, w  A[(x, d) :: η] (5)

w  Γ iff w  A[nil] for all A ∈ Γ

We sometimes write K when necessary.

Fig. 5 Kripke semantics

rules are usually defined for arbitrary pseudo-terms, and then people show that only
well-formed expressions are involved in typing rules.

If we had followed, e.g., the locally-named style of McKinna and Pollack [22,23], we
should have defined the deduction rules with pseudo-formulae, implicitly thinking of
well-formed formulae. The rule (Ax), e.g., would need a side condition that all formulae
involved are well-formed:

Ok(A :: Γ )

Γ | A ` A

where Ok(∆) denotes that all formulae in the context ∆ are well-formed formulae.
Subsequently, we could prove the following: if Γ ` A or Γ | A ` C then Ok(A :: C :: Γ ).
As we have already mentioned, this approach requires extra syntax and lemmata about
well-formed formulae and contexts (cf. McKinna and Pollack [22,23] and Aydemir et
al. [3]).

5.2 Kripke semantics

Kripke semantics was created in the late 1950s and early 1960s by Saul Kripke [18,19].
It was first made for modal logic, and later adapted to intuitionistic logic and other
non-classical or classical systems (cf. Troelstra and van Dalen [26] and Ilik et al. [17]).
Here, we use the conventional Kripke model adopted by Troelstra and van Dalen [26].



13

A Kripke model K = (W,≤,,D, V ) is a tuple of a partially-ordered set W of
worlds, a domain D, interpretations of constant and function symbols into the domain,
and a relation between worlds, predicates, and domain elements (cf. Figure 5).

Note that the interpretation of pseudo-terms is made total by ignoring insignifi-
cant variables. Furthermore, the being-in-a-list part of a term is simply thrown away.
Consequently, the trace relocation has no impact on the Kripke semantics.

Let a Kripke model K = (W,≤,,D, V ) and an association η ∈ list (name ∗ D)
be given.

Theorem 11 (Relocation-irrelevance) Let m be a trace, t ∈ ptermm, and A ∈
pformulam.

1. t[η] = treloc(t)[η].
2. w  A[η] if and only if w  freloc(A)[η].

The monotonicity of the forcing relation with respect to the worlds relation ≤ can be
proved by a simple structural induction:

Lemma 12 (Monotonicity) Letm be a trace. Given a pseudo-formula A ∈ pformulam,
if w  A[η] and w ≤ w′ hold, so does w′  A[η].

Remark 13 The standard Kripke semantics uses cumulative domains D(w), w ∈ W
instead of a fixed domain D such that D(w) ⊆ D(w′) when w ≤ w′. Then, the universal
quantification case (5) should have the following form:

w  (∀xA)[η] iff, for all w′ ≥ w and d ∈ D(w), w′  A [(x, d) :: η].

In our case, where → and ∀ are the only logical symbols, two styles are “functionally
equivalent” in the sense that soundness and completeness hold in both cases (cf. Herbelin
and Lee [16]).

5.3 Soundness

The soundness of LJT with respect to Kripke semantics is relatively simple.

Theorem 14 (Soundness) Let A :: C :: Γ be a context.

1. Suppose Γ ` C holds. Then for any Kripke model K = (W,≤,K,D, V ) and any
w ∈ W, if w K Γ holds, so does w K C[nil].

2. Suppose Γ | A ` C holds. Then for any Kripke model K = (W,≤,K,D, V ) and
any w ∈ W, if w K Γ and w K A[nil] hold, so does w K C[nil].

If we had included parameters, the soundness proof would be a simple mutual in-
duction on the derivation, cf. Herbelin and Lee [16]. However, because we use constants
instead, the (Exists-Fresh-∀R) rule requires more attention.

Suppose that Γ ` ∀xA follows from Γ ` [ c / x ]A for a constant c /∈ OC(A,Γ ) that
w  Γ holds. Then, given an arbitrary d ∈ D, we have to show that

w K A[(x, d) :: nil] (6)

holds. At this point, the premise of (Exists-Fresh-∀R) seems to provide too weak an
induction hypothesis. That is, a constant is associated with a fixed value, while the



14

interpretation of the universal quantification involves all possible values from the do-
main.

The solution lies in the fact that fresh constants are as good as fresh parameters.
Syntactically, this fact is represented by the renaming lemma (Lemma 24). At the
semantic level, this corresponds to creating a new Kripke model from a given one such
that the semantics remains nearly identical.

Definition 15 Given a Kripke model K = (W,≤,,D, V ), a constant c, and a value
d ∈ D, we define a new Kripke model Kc,d := (W,≤,,D, Vc,d), where

Vc,d(c
′) :=

{
d if c = c′,

V (c′) otherwise.

That is, K and Kc,d differ only in the evaluation of the constant c. Consequently, we
can present the following lemma:

Lemma 16 (Forcing with fresh constants) Given a pseudo-formula A and a con-
stant c, if c does not occur in A, then the following holds: For any Kripke model
K = (W,≤,,D, V ), any w ∈ W, and any d ∈ D:

w K A[η] ⇐⇒ w Kc,d A[η]

under the condition that OV(A) ⊆ dom(η). (Note that OV(A) ⊆ dom(η) trivially holds
when A is a well-formed formula.)

Now, we use Lemma 16 to show that ω Kc,d Γ . Consequently, by induction hy-
pothesis, we also have w Kc,d ([ c / x ]A)[nil]. Finally, we can prove (6):

w Kc,d ([ c / x ]A)[nil] ⇐⇒ w Kc,d A[(x, d) :: nil] (7)

⇐⇒ w K A[(x, d) :: nil],

where the equivalence in (7) is obviously true.

5.4 Universal Completeness

The universal Kripke model U consists of contexts as worlds, the sub-context relation
⊆, and the provability for atomic formulae, and term as the constant domain:

Definition 17 (Universal Kripke Model) U = (context,⊆,U , term, VU ) where

VU (c) = c and VU (f)(t1, t2) = f t1 t2 .

Furthermore, Γ U P t iff Γ ` P t holds.

Note that in the universal model U , the interpretation of pseudo-terms corresponds
to substitution: Given a term t ∈ ptermm and an association η = (x1, u1), ..., (xn, un),
where ui ∈ term, we have t[η] = [nil ⇑ η ] t. The Universal Completeness, as stated
below, indicates that we have a similar correspondence between forcing and deduction.

Theorem 18 (Universal Completeness) Let A ∈ pformulam, Γ ∈ context, and
η be an association. Then, Γ U A[η] implies Γ ` [nil ⇑ η ]A.



15

Remark 19 We emphasize that simultaneous substitution enables us to have this nat-
ural correspondence between syntax and semantics. Note also that A is an arbitrary
pseudo-formula, i.e., no well-formedness is assumed. This implies that the theorem can
be proved by a simple structural induction on A. This is a point where simultaneous
substitution with destination plays an important role.

The Universal Completeness can be proved by a mutual induction with the following
fact:

If ∀(C : formula) (Γ ′ : context) (Γ ⊆ Γ ′ ∧ Γ ′ | [nil ⇑ η ]A ` C ⇒ Γ ′ ` C)

holds, so does Γ U A[η].

Using this fact, one can easily show that Γ U Γ holds; consequently, we have the
following:

Theorem 20 (Completeness) Let A be a formula and Γ a context. If, for any
Kripke model K = (W,≤,,D, V ) and any w ∈ W, w  A follows from w  Γ ,
then we have Γ ` A.

Remark 21 (With parameters) Even if we had considered parameters, the domain
of the universal Kripke model remains term, the set of well-formed terms with possible
occurrences of parameters.

Simultaneous substitution is of the form [ ` ⇑ ρ, η ]A, where ρ and η are responsible
for parameters and variables, respectively. Correspondingly, the forcing relation has the
form ω K A[ρ, η]. Finally, (Universal Completeness) changes slightly:

Given A ∈ pformulam, Γ ∈ context, and two associations ρ, η, if OP(A) ⊆
dom(ρ) and Γ U A[ρ, η], then Γ ` [nil ⇑ ρ, η ]A.

Here, OP(A) is the set of parameters occurring in A. Note that Theorem 18 becomes a
special case, where OP(A) = ∅.

5.5 Normalization by Evaluation

A combination of completeness and soundness leads to cut-admissibility. Let us assume
that both Γ | A ` B and Γ ` A hold. Then, by Soundness Γ U A, hence Γ U B

holds by Soundness again. Consequently, Γ ` B holds by Universal Completeness.

Theorem 22 (Cut-admissibility) Let A,B be formulae and Γ a context. Then,
(Cut) is admissible in LJT:

Γ | A ` B Γ ` A
Γ ` B (Cut)

Because (Cut) is a semantically sound rule, a composition of (Soundness) and
(Universal Completeness) normalizes any proof with (Cut) to a cut-free proof. 10

10 A program extraction (which is available in Coq) from the composition would provide a
functional program that produces a cut-free proof from a deduction with (Cut). We believe
that the normalization follows the reduction semantic of LJT.



16

6 Exists-Fresh quantification, a variable binding

One of primary issues addressed in our work is the formal handling of ∀-quantification.
This includes the following:

– Formalization of a proof system with adequate treatment of the freshness condition
in the ∀ right introduction rule (see Figure 4);

– Statement and proof of a weakening lemma for this proof system, which preserves
the freshness condition of derivations (see Lemma 23 below);

– Ensuring well-formed expressions (see Lemma 3);
– Characterization of a set of terms that will serve as standard model for the com-

pleteness proof (we have to ensure that any variable used in a binder avoids the
variables in terms) (see Remark 21).

The second point is closely related to the first point, i.e., to the representation style
of ∀ right quantification, while the others are not related. In this section, we discuss at
some length the issue of adequate formal representations of quantification rules.

For the formal representation of ∀ right quantification, we use the so-called (Exists-
Fresh) style because we believe it is the closest approach to the pen-and-paper repre-
sentation. Indeed, the rule (Exists-Fresh-∀R) reflects the intuition that, if the premise
holds for some c that does not occur free in Γ nor in ∀xA, c should not be affected
by any operation during the deduction, and therefore, it should be possible for an
arbitrary term t that Γ ` A(t) holds.

Weakening and renaming There is a well-known issue about the (Exists-Fresh)
style: It provides too weak an induction principle. For example, let us try to prove the
weakening lemma below in an intuitive way.

Lemma 23 (Weakening) Let A,C be formulae and Γ, Γ ′ contexts such that Γ ⊆ Γ ′.

1. Γ ` A implies Γ ′ ` A.
2. Γ ;A ` C implies Γ ′ ;A ` C.

When proving this lemma by induction on the given deduction rules, in the case
for (Exists-Fresh-∀R), we are given a derivation ending with

Γ ` [ c / x ]A for some c /∈ OC(A,Γ )
Γ ` ∀xA

and an induction hypothesis
Γ ′ ` [ c / x ]A

for an arbitrary Γ ′ such that Γ ⊆ Γ ′. Now, we must conclude that Γ ′ ` ∀xA holds.
However, we cannot directly apply the (Exists-Fresh-∀R) because we do not know
whether c /∈ OC(Γ ′). To ensure the freshness of the instance c, we can choose another
fresh constant d such that d /∈ OC(Γ ′), expecting that the following holds:

Γ ′ ` [ d / x ]A . (8)

This, however, would require renaming of constants.
(Simultaneous) Renaming is a kind of (simultaneous) substitution where constants

are replaced with constants. In the following, ρ = (c1, d1), ..., (cn, dn) stands for a
simultaneous renaming. Given a pseudo-formula A ∈ pformulam, ρA stands for a



17

pseudo-formula in pformulam where each constant ci occurring in A is simultaneously
replaced with di. For a context Γ , ρΓ is canonically defined. Note that [ d / x ]A ≡
ρ ([ c / x ]A), where ρ = (c, d).

Lemma 24 (Renaming) Let A,C be formulae and Γ a context. Assume c is a con-
stant such that c /∈ OC(C, Γ ). Given an arbitrary constant d, if ρ = (c, d), then we
have:

1. Γ ` A implies Γ ` ρA.
2. Γ ;A ` C implies Γ ; ρA ` C.

When proving (Renaming) by induction on the deduction, the following case is
critical. Let us assume that the deduction ends with an application of (Exists-Fresh-∀R)
as follows:

Γ ` [ c′ / y ]B for some c′ /∈ OC(B,Γ )
Γ ` ∀y B

where c 6= c′. Using induction hypothesis, we can show that, for ρ = (c, d),

Γ ` [ c′ / y ] (ρB) . (9)

However, we cannot apply (Exists-Fresh-∀R) because we do not know whether c′ /∈
OC(ρB, Γ ). We would need an extra call to (Renaming) in order to prove (Renaming).

It is very common in pen-and-paper work of proof theory to use proof-length induc-
tion to solve this problem. The proof-length of a derivation is the length of the longest
path of its derivation tree. In this case, we can prove that Γ ` ρB can be proved
with the same proof-length as that of Γ ` B for an arbitrary formula B. Therefore,
we can replace c′ in (9) with a totally fresh c′′ such that the induction hypothesis
can be applied. However, this solution requires relatively heavy infrastructure about
proof-length.

Equivalence of three well-known quantification styles Another standard way to
solve the aforementioned problem is to strengthen the induction principle for deduction
by changing (Exists-Fresh-∀R) to one of the following styles:

Γ ` [ c / x ]A for all c 6∈ OC(∀xA :: Γ )

Γ ` ∀xA (All-Fresh-∀R)

or

Γ ` [ c / x ]A for all c 6∈ L
Γ ` ∀xA (Cofinite-∀R)

where L is a finite set of constants.
The (All-Fresh) style is used in McKinna and Pollack [22,23] and in Leroy’s solution

[20] to the POPLmark Challenge, while in Aydemir et al. [3], the efficiency of the cofinite
quantification style is well explained. Furthermore, it is proved in each paper that the
typability of terms (provability of formulae in our work) remains the same.

Let LJTa and LJTc be variants of LJT where (Exists-Fresh-∀R) is replaced with
(All-Fresh-∀R) and (Cofinite-∀R), respectively. In both LJTa and LJTc, (Weakening)
can be proved easily by a simple induction on the deduction and (Renaming) is not
necessary anymore. Let à denote the derivation in LJTa, and c̀, in LJTc.



18

The equivalence of the three styles can be proved in a straightforward manner by
structural induction on the deduction, except for the following case:

Γ ` A ⇒ Γ à A (10)

A naive approach would encounter the same problem as before, i.e., the induction
hypothesis in the (Exists-Fresh-∀R) is too weak. Following McKinna and Pollak, we
could show (10) using the fact that bijective renaming respects à:

Γ à A ⇒ ρΓ à ρA. (11)

where ρ (·) stands for a bijective renaming of constants (cf. Section 5.2.1 in [23]). Leroy
[20] follows a similar approach using swap functions, which are special forms of bijective
renaming.

Using simultaneous renaming Although the equivalence proof is relatively straight-
forward, we have to check whether we really need to strengthen the induction principle
in order to prove that (Weakening) and (Renaming) hold in LJT. This is also related
to the question whether the excursion to LJTa or LJTc is necessary.

If we revisit the points where the intuitive proofs of (Weakening) and (Renaming)
could not proceed further, we notice that (Weakening) needs (Renaming) and that
(Renaming) in turn needs to be proved by using simultaneous renaming, as in (11).
This indicates that (Weakening) and (Renaming) could be proved together based on
simultaneous renaming.

Theorem 25 (Generalized Weakening) Let A,C be formulae, Γ, Γ ′ contexts such
that Γ ⊆ Γ ′, and ρ an arbitrary renaming.

1. Γ ` A implies ρΓ ′ ` ρA.
2. Γ ;A ` C implies ρΓ ′ ; ρA ` ρC.

Note that there are no side conditions on the renaming ρ, i.e., no bijectivity is re-
quired. Both claims can be proved by a simple mutual structural induction. Finally,
(Weakening) and (Renaming) are special forms of (Generalized Weakening). Further,
we remark that (10) can be proved in a similar way:

Γ ` A ⇒ ρΓ à ρA

where ρ denotes an arbitrary renaming.

7 Conclusion

We proposed a new first-order representation, called representation with locally traced
names, of logical formal systems with variable binding. The main feature is that an
extra syntax for well-formed terms and formulae are not necessary even if two sorts of
variable names are used. In order to demonstrate the adequacy of our representation
style, we formalized in Coq the soundness and completeness of intuitionistic first-order
predicate logic with respect to a Kripke semantics. As a result, the cut-elimination
follows based on normalization by evaluation (NBE), i.e., by the composition of com-
pleteness and soundness. We remark that the mechanized proofs are nearly identical
to the informal proofs given by Herbelin and Lee [16].



19

In addition to the new representation style, we incorporated two more suggestions
that helped us reduce the basic infrastructure with respect to variable binding and
substitution. First, merging parameters with constants enabled us to avoid several
substitution issues. Second, using simultaneous substitution and renaming, it was pos-
sible to avoid any type of length induction or excursion to other equivalent deduction
systems. In particular, this point forced us to reinvestigate the role of the (Exists-Fresh)
style of first-order structure quantification. From our experience, we conclude that the
(Exists-Fresh) style is probably the best solution for the issue of quantification style.
Best in the sense that it is closest to the pen-and-paper style and that no functional
types are involved in dealing with variable binding.

In the future, we plan to focus on our approach when derivability is a part of the
domain of the discourse. This will be the case if one wants to prove that the cut-free
derivation obtained by semantic cut-elimination actually implements β-normalization
and η-expansion over derivations, as shown by Coquand [8,9] in her semantic normal-
ization proof for the implication logic.

References

1. Altenkirch, T., Reus, B.: Monadic presentations of lambda terms using generalized induc-
tive types. In: CSL, pp. 453–468 (1999)

2. Ambler, S.J., Crole, R.L., Momigliano, A.: A definitional approach to primitivexs recursion
over higher order abstract syntax. In: MERLIN. ACM (2003)

3. Aydemir, B.E., Charguéraud, A., Pierce, B.C., Pollack, R., Weirich, S.: Engineering formal
metatheory. In: POPL, pp. 3–15. ACM Press (2008)

4. Bellegarde, F., Hook, J.: Subsitution: A formal methods case study using monads and
transformations. Sci. Comput. Program. 23(2-3), 287–311 (1994)

5. Berger, U., Eberl, M., Schwichtenberg, H.: Normalisation by Evaluation. In: Prospects
for Hardware Foundations, Lecture Notes in Computer Science, vol. 1546, pp. 117–137.
Springer (1998)

6. Berger, U., Schwichtenberg, H.: An inverse of the evaluation functional for typed lambda-
calculus. In: LICS, pp. 203–211. IEEE Computer Society (1991)

7. de Bruijn, N.G.: Lambda calculus notation with nameless dummies, a tool for automatic
formula manipulation, with application to the Church-Rosser theorem. Indagationes Math-
ematicae 34(5), 381–392 (1972)

8. Coquand, C.: From Semantics to Rules: A Machine Assisted Analysis. In: CSL ’93, Lecture
Notes in Computer Science, vol. 832, pp. 91–105. Springer (1993)

9. Coquand, C.: A formalised proof of the soundness and completeness of a simply typed
lambda-calculus with explicit substitutions. Higher-Order and Symbolic Computation
15(1), 57–90 (2002)

10. Coquand, T.: An algorithm for testing conversion in type theory. In: Huet, G., Plotkin,
G. (eds.) Logical Frameworks, pp. 255–279. Cambridge University Press (1991)

11. Geuvers, H.: Logics and Type Systems. Ph.D. thesis, University of Nijmegen (1993)
12. Gordon, A.D., Melham, T.F.: Five axioms of alpha-conversion. In: TPHOLs, Lecture Notes

in Computer Science, vol. 1125, pp. 173–190. Springer (1996)
13. Harper, R., Licata, D.R.: Mechanizing metatheory in a logical framework. J. Funct. Pro-

gram. 17(4-5), 613–673 (2007)
14. Herbelin, H.: A Lambda-Calculus Structure Isomorphic to Gentzen-Style Sequent Calculus

Structure. In: CSL ’94, Lecture Notes in Computer Science, vol. 933, pp. 61–75. Springer
(1994)

15. Herbelin, H.: Séquents qu’on calcule: de l’interprétation du calcul des séquents comme
calcul de λ-termes et comme calcul de stratégies gagnantes. Ph.D. thesis, Université Paris
7 (1995)

16. Herbelin, H., Lee, G.: Forcing-Based Cut-Elimination for Gentzen-Style Intuitionistic Se-
quent Calculus. In: Ono, H., Kanazawa, M., de Queiroz, R.J.G.B. (eds.) WoLLIC, Lecture
Notes in Computer Science, vol. 5514, pp. 209–217. Springer (2009)



20

17. Ilik, D., Lee, G., Herbelin, H.: Kripke models for classical logic. Ann. Pure Appl. Logic
161(11), 1367–1378 (2010)

18. Kripke, S.: A Completeness Theorem in Modal Logic. J. Symb. Log. 24(1), 1–14 (1959)
19. Kripke, S.: Semantical considerations on modal and intuitionistic logic. Acta Philos. Fen-

nica 16, 83–94 (1963)
20. Leroy, X.: A locally nameless solution to the poplmark challenge. Tech. Rep. 6098, INRIA

(2007)
21. Mcbride, C., Mckinna, J.: Functional pearl: I am not a number: I am a free variable. In:

In Haskell ’04: Proceedings of the 2004 ACM SIGPLAN Workshop on Haskell, pp. 1–9.
ACM Press (2004)

22. McKinna, J., Pollack, R.: Pure type systems formalized. In: TLCA, pp. 289–305 (1993)
23. McKinna, J., Pollack, R.: Some lambda calculus and type theory formalized. Journal of

Automated Reasoning 23(3-4), 373–409 (1999)
24. Mints, G.: Normal forms for sequent derivations. In: Kreiseliana, pp. 469–492. A K Peters,

Wellesley, MA (1996)
25. Sato, M., Pollack, R.: External and internal syntax of the lambda-calculus. J. Symb.

Comput. 45(5), 598–616 (2010)
26. Troelstra, A.S., van Dalen, D.: Constructivism in Mathematics: An Introduction I and II,

Studies in Logic and the Foundations of Mathematics, vol. 121, 123. North-Holland (1988)
27. Urban, C.: Nominal techniques in isabelle/hol. J. Autom. Reasoning 40(4), 327–356 (2008)


	Introduction
	Main features of the paper
	Variables, constants, and -conversion
	Representation with locally traced names
	Intuitionistic sequent calculus LJT and Kripke semantics
	Exists-Fresh quantification, a variable binding
	Conclusion

